
Robotino® View2

EN

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines
Inhalts verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu
Schadenersatz. Alle Rechte vorbehalten, insbesondere das Recht, Patent-,
Gebrauchsmuster- oder Geschmacksmusteranmeldungen durchzuführen.

The copying, distribution and utilisation of this document as well as the communication of
its contents to others without express authorisation is prohibited. Offenders will be held
liable for the payment of damages. All rights reserved, in particular the right to carry out
patent, utility model or ornamental design registration.

Sin nuestra expresa autorización, queda terminantemente prohibida la reproducción total
o parcial de este documento, asi como su uso indebido y/o su exhibición o comunicación
a terceros. De los infractores se exigirá el correspondiente resarcimiento de daños y
perjuicios. Quedan reservados todos los derechos inherentes, en especial los de
patentes, de modelos registrados y estéticos.

Toute diffusion ou reproduction du présent document, de même que toute exploitation ou
communication de son contenu sans l'accord express de l'auteur est proscrite. Toute
contravention pourra donner lieu à des demandes de dommages et intérêts. Tous droits
réservés, notamment en termes de demande de brevet, de modèle déposé et de
protection par dessin ou modèle.

© Festo Didactic GmbH & Co. KG, 73770 Denkendorf, Germany, April 2010
Internet: www.festo-didactic.com
e-mail: did@de.festo.com

3© Festo Didactic GmbH & Co. KG

5© Festo Didactic GmbH & Co. KG

Inhalt / Contents / Contenido / Sommaire

__ 81 Welcome

__ 81.1 Improvements

__ 81.2 Installation, update and de-installation

__ 91.3 Changing language

__ 92 Familiarisation with the workspace

__ 92.1 Structure and concept of user interface

__ 11Tool bar 2.1.1

__ 12Function block library 2.1.2

__ 132.2 Terminology

__ 133 Using Robotino® View

__ 133.1 Create a new project

__ 143.2 Load an existing project

__ 143.3 Insert function blocks into sub-programs

__ 143.4 Interlink function blocks

__ 153.5 Global variables

__ 163.6 Execute a sub-program

__ 173.7 Execute the main program

__ 183.8 Connect to Robotino®

__ 193.9 Keyboard shortcuts

__ 203.10 Type conversion

__ 203.11 Updates

__ 203.12 Upload projects to Robotino and execute them

__ 21Browse Robotino 3.12.1

__ 22Upload and execute 3.12.2

__ 233.13 Upgrade Robotino packages

__ 25Robotino firmware installation 3.13.1

__ 26Interna 3.13.2

__ 264 Examples

__ 264.1 Control programs

__ 27Tutorial 2 4.1.1

__ 344.2 Logic

__ 34Multiplexer 4.2.1

__ 34FlipFlop 4.2.2

__ 345 Function block library

__ 355.1 Logic

__ 35Counter up 5.1.1

__ 38Counter down 5.1.2

__ 39Multiplexer 5.1.3

__ 40Demultiplexer 5.1.4

__ 41AND 5.1.5

__ 43AND FL 5.1.6

__ 45NAND 5.1.7

__ 47NAND_FL 5.1.8

__ 48OR 5.1.9

__ 49XOR 5.1.10

__ 50NOT 5.1.11

__ 51NOR 5.1.12

© Festo Didactic GmbH & Co. KG6

__ 52Latching relay 5.1.13

__ 53Sample and hold element 5.1.14

__ 545.2 Mathematics

__ 54Arithmetic operations 5.2.1

__ 58Comparison Operations 5.2.2

__ 60Functions 5.2.3

__ 67Arrays 5.2.4

__ 695.3 Vector analysis

__ 69Vector operations 5.3.1

__ 73Element operations 5.3.2

__ 74Transformations 5.3.3

__ 775.4 Display

__ 77Oscilloscope 5.4.1

__ 78Laser range finder data display 5.4.2

__ 795.5 Image processing

__ 79Segmenter 5.5.1

__ 83Segment Extractor 5.5.2

__ 85Line Detector 5.5.3

__ 87ROI 5.5.4

__ 89Image Information 5.5.5

__ 91Colorspace conversion 5.5.6

__ 915.6 Generators

__ 92Arbitrary waveform generator 5.6.1

__ 93Constant 5.6.2

__ 94Timer 5.6.3

__ 95Random generator 5.6.4

__ 955.7 Filter

__ 96Mean filter 5.7.1

__ 965.8 Navigation

__ 96Position Driver 5.8.1

__ 101Constant pose 5.8.2

__ 102Pose composer 5.8.3

__ 103Pose decomposer 5.8.4

__ 104Path composer 5.8.5

__ 104Path decomposer 5.8.6

__ 106Path driver 5.8.7

__ 114Obstacle avoidance 5.8.8

__ 1165.9 Input Devices

__ 116Control Panel 5.9.1

__ 117Slider 5.9.2

__ 1185.10 Data exchange

__ 118Image Reader 5.10.1

__ 120Image Writer 5.10.2

__ 1215.11 Variables

__ 1216 Devices

__ 1216.1 Add and edit

__ 1226.2 Show dialogs

__ 1236.3 Robotino

__ 123Toolbar 6.3.1

__ 124Dialog 6.3.2

__ 124Function blocks 6.3.3

__ 1506.4 Joystick

__ 150Dialog 6.4.1

__ 150Function blocks 6.4.2

7© Festo Didactic GmbH & Co. KG

__ 1516.5 Local camera

__ 152Dialog 6.5.1

__ 153Function blocks 6.5.2

__ 1546.6 OPC Client

__ 155Dialog 6.6.1

__ 156Function blocks 6.6.2

__ 1586.7 Data exchange

__ 158Server 6.7.1

__ 161Client 6.7.2

__ 165Function blocks 6.7.3

__ 1656.8 UDP data exchange

__ 165Protocol 6.8.1

__ 169Dialog 6.8.2

__ 170Function blocks 6.8.3

__ 171Example 6.8.4

__ 1717 Programming

__ 1717.1 My function blocks

__ 173Tutorial 1 7.1.1

Index __ 175

© Festo Didactic GmbH & Co. KG

Welcome

8

1 Welcome

Robotino® View is the intuitive graphic programming environment for Robotino®. Robotino® View
enables you to create and execute control programs for Robotino®.

1.1 Improvements

Robotino® View 2 combines modern operational concepts, extensibility by the user and intuitive usage.
All innovations preserve the many positive aspects known from Robotino® View 1. The user being familiar
with Robotino® View 1 will recognize many features from the previous version. These are for example the
function block library or the toolbar by which the connection to Robotino is established. At first sight
Robotino® View 2 looks very similar to its predecessor.

Kept feature?

Programs are designed as data flow control programs. The function block library contains the units the
data flow graph is build from.

The connection to Robotino is established via the toolbar.

Whats new?

The sequence control program is replaced by a "real" control program known from PLC programming
following DIN EN 61131.

Robotino® View 2 is not only able to control Robotino, but any device and in unlimited quantities. I.e. an
arbitrary number of Robotinos can be controlled simultaneously from within one Robotino View project.

Subprograms can be reused within the main program.

Subprograms can be imported from different projects.

The user can design and implement custom function blocks which are loaded into the function block
library at runtime.

The user can design and implement custom devices and load them as Plugin into the device
management.

Changes within this version:

The device manager had been integrated into the function block library. See Add and edit devices .

Projects can be uploaded to Robotino and also be started on Robotino (requires Robotino CF card
Version 2.0). See upload projects .

New devices for data exchange over network. See Devices for data exchange .

1.2 Installation, update and de-installation

You must be in possession of the administrator rights to be able to install Robotino® View.

To install Robotino® View follow the instructions in the dialog boxes.

If users without administrator rights are to use Robotino® View,

they will need to include the programs released from the restrictions under Windows® XP

121

20

158

Welcome

© Festo Didactic GmbH & Co. KG 9

in the security centre for the setting for the firewall of Robotino® View (Port 80 and 8080).

1.3 Changing language

Robotino® View automatically recognizes the language set in your Windows® System and selects the
corresponding translation of Robotino® View.

You can change the automatic setting at any time via menu item Extras languages. The new settings
immediately take effect.

2 Familiarisation with the workspace

Once you have familiarised yourself with the workspace and the designations used in Robotino® View, it
will be easier for you to follow the remainder of the documentation.

In this section you will learn more about:

The design and concept of the user interface,

The terminology used in Robotino® View.

2.1 Structure and concept of user interface

When starting up Robotino® View an empty project with a single "Robotino" device is opened. The
complete workspace is taken up by the project.

© Festo Didactic GmbH & Co. KG

Familiarisation with the workspace

10

Number Name Description

1 Title bar Shows the name of the current project (Unnamed). If there are unsaved changes
within the project, the project name is followed by a *.

Next to the project name the application name and application version is shown
(here Robotino View version 2.2.4).

Default buttons to minimize, maximize and closing.

2 Menu bar Menus to load/save, edit, view ...

3 Tool bar Quickly accessible buttons to the function from the menus.

Buttons to start and stop the simulation.

Input box for Robotini's IP address and connect button (see Robotino tool bar
).

Festo Logo with Link to the Festo homepage.

4 Program
selector

Here you can switch between the main program and the subprograms of a project.
The subprogram "Step1" is visible at present.

5 Program
workspace

Here the program is viewed and edited. Obviously, the subprogram "Step1" is
empty.

123

Familiarisation with the workspace

© Festo Didactic GmbH & Co. KG 11

6 Function
block library

The function blocks available for programming are displayed here.

7 Status bar Shows information about project and application status.

2.1.1 Tool bar

Create a new project

Create a new sub-program

Open an existing project

Save current project

Start main program

Start the currently visible program

Pause simulation

Stop simulation

Upload the project to Robotino

IP address input
and connect
button

see Robotino tool bar

Festo-Logo with link to Festo Homepage

12

123

© Festo Didactic GmbH & Co. KG

Familiarisation with the workspace

12

2.1.2 Function block library

The folder function block library contains function blocks that are available in every project. Currently
visible are the function blocks Equality, Greater ... Less Equal from the sub folder Comparison operations.

The folder Robotino® contains function blocks that are provided by the "Robotino® " device. A new
project always contains one "Robotino® ". Currently visible are the function blocks "Motor1 " to "
Omnidrive (inverse) " from the folder "Drive system ".

123

123 125

128 124

Familiarisation with the workspace

© Festo Didactic GmbH & Co. KG 13

The folder Variables contains function blocks to read and write global Variables.

You can add function blocks via Drag&Drop to the current sub-program.

Function blocks of devices are bound to concrete hardware resources. "Motor1 " is available once on
Robotino. Therefore you can add "Motor1 " only once to a sub-program. If "Motor1 " had been
added to a sub-program already, the icon of "Motor1 " in the function block library is gray.

2.2 Terminology

Function block Smallest function unit a subprogram consists of. By networking several
function blocks it is possible to realise complex robot behaviour.

Subprogram Function blocks are interlinked by networks in a sub-program

Main program A control program written in sequential function chart connecting the
subprograms.

Project A project consists of a main program and several subprograms. Projects can
be loaded and saved.

Network Function blocks are linked by one or several networks.

Network point Network points are within a network and enable the structuring and graphic
representation of a network. A new sub-network can be started from a
network point.

3 Using Robotino® View

Robotino® View is used to create the control programs for Robotino®. In this section you will learn how to:

create a new project

load an existing project

insert function blocks into a sub-program

interlink function blocks by networks

execute a sub-program and the main program

establish a connection to Robotino®

3.1 Create a new project

There are two possibilities to create a new project:

Via the menu bar File New

Via the tool bar with the button „Create a new project"

125

125 125

125

11

© Festo Didactic GmbH & Co. KG

Using Robotino® View

14

3.2 Load an existing project

There are three possibilities to load an existing project:

Via the menu bar File Open

Via the tool bar with the button "Load a project from file"

Via the keyboard shotcut Ctrl + O

Saved projects do have the file extension .rvw2

3.3 Insert function blocks into sub-programs

After creating a new project or after loading an existing project from file you can start developing your
own control program or modifying the existing one.

Example:

Make sure a sub-program is shown in the current view. With newly created project there is always the sub-
program "Step1". The sub-program "Step1" is shown after creating a new project. The function block
library is only visible when looking at a sub-program.

Expand the folder "Logic " in the function block library. Drag "Counter Up " from the function block
library and drop it in the sub-program.

Expand the folder "Generators " in the function block library. Drag "Arbitrary Waveform Generator "
and drop it left to the "Counter Up ".

3.4 Interlink function blocks

By connecting output connectors to input connectors of function blocks, data is passed from the function
blocks output to the others function block input. The connection is visualized by a line called network. A
network is always connected to exactly one output connector and at least one input connector.

The current sub-program example contains an "Arbitrary Waveform Generator " and a "Counter Up
" function block. Connect the "Arbitrary Waveform Generator " output to the upper input of "Counter
Up ".

11

12

35 35

91 92

35

92 35

92

35

Using Robotino® View

© Festo Didactic GmbH & Co. KG 15

Do a left mouse click on the "Arbitrary Waveform Generator " output connector. By this you are
creating a net line which is attached to the "Arbitrary Waveform Generator " output and with the other
end to the mouse pointer.

By clicking with the left mouse button somewhere in the sub-program you can create net point. To create
the network click on the upper input of "Counter Up ".

To delete a net point mark it by doing a left click on it and press Del.

To erase a net line mark it by doing a left click on it and press Del. This might erase the whole network.

3.5 Global variables

Global variables can be read and written in every subprobram of a project; in the main program they can
be used in the transition conditions.

In the main program view the variable management is located on the right side. It enables you to add,
remove and rename variables and to assign initial values to them.

92

92

35

© Festo Didactic GmbH & Co. KG

Using Robotino® View

16

Main program with variable management

Global variables store floating point numbers only. Support for other data types will be included in future
versions of Robotino View. After creating a variable function blocks for reading and writing the variable are
available in the function block library.

3.6 Execute a sub-program

After connecting the "Arbitrary Waveform Generator " to the "Counter Up " you can start simulation

of the sub-program by clicking „Start" shown in the tool bar .

You can display the values generated by the "Arbitrary Waveform Generator " and "Counter Up "
by selecting View Show Connector Values or by pressing Ctrl + D.

92 35

11

92 35

Using Robotino® View

© Festo Didactic GmbH & Co. KG 17

You can see the "Arbitrary Waveform Generator " generating values between 0 and 10. "Counter Up
" increments its output when the input changes from false (0) to true (>0). At the moment this only

happens when starting the sub-program. See type conversion to read how floating point numbers are
converted to boolean. Furthermore it is very unlikely that the "Arbitrary Waveform Generator " output
matches exactly to 0.

To see the counter counting, select square from the "Arbitrary Waveform Generator " dialog. The
generated output is now in the range -1 to 1.

3.7 Execute the main program

By clicking on „Start" in the tool bar , simulation of the currently visible program is started. If the
sub-program "Step1" is visible only "Step1" is simulated. "Step1" is part of the main program, which can
be simulated as well.

Use the Program selector to make the main program the current program.

92

35

20

92

92

11

9

© Festo Didactic GmbH & Co. KG

Using Robotino® View

18

By clicking on „Start" in the tool bar simulation of the main program is started. The Init step is run
only once, because the transition condition following the Init step is true. As the transition condition
following Step1 is constantly false, Step1 and the sub-program assigned to it (also called Step1) is
executed.

You can always start simulation of the main program no matter which via is currently visible, by clicking

the "Start main program" button in the tool bar .

3.8 Connect to Robotino®

Enter Robotino's IP address in the IP address input field in the tool bar . The default address is
172.26.1.1. Click onto the connection button left to the address input field. If the connect button changes
from gray to green, the connection is established and data between Robotino and Robotino View is
exchanged.

11

11

11

Using Robotino® View

© Festo Didactic GmbH & Co. KG 19

3.9 Keyboard shortcuts

Function Keyboard shortcut

Open file Ctrl + O

Save file Ctrl + S

Save file as Shift + Ctrl + S

Quit Robotino® View Ctrl + Q

Undo Ctrl + Z

Redo Ctrl + Y or Shift + Ctrl + Z

Delete selection Del

Cut selection Ctrl + X

Copy selection Ctrl + C

Paste selection Ctrl + V

Move object up

Move object down

Move object left

Move object right

Move view up
Ctrl +

Move view down
Ctrl +

Move view left
Ctrl +

Move view right
Ctrl +

Clear selection Esc

Select all Ctrl + A

Demagnify view F3

Magnify view Shift + F3

Magnify grid F4

Demagnify grid Shift + F4

Toggle function block library visibility Ctrl + L

Toggle function block connector values' visibility Ctrl + D

Toggle function block connector descriptions' visibility Ctrl + T

© Festo Didactic GmbH & Co. KG

Using Robotino® View

20

3.10 Type conversion

Data type implicit conversion to Description

int float, bool Conversion to bool will result in true if the value is not 0.

float int, bool Conversion to bool will result in true if the value is not 0.

bool int, float True results in 1, false results in 0.

pose path A pose is converted to a path with length 1.

path pose The result of the conversion of a path to a pose is the path's first
pose. If the path is empty, the conversion results in an invalid
pose.

float float array A floating point number is converted to a float array with length
1.

3.11 Updates

Robotino View has an online update feature. To check the availability of a new software version, select
"Check For Updates" in the "Extras" menu. This check is also done automatically after the application
has been launched. If a new Version is available, it can be downloaded and installed automatically.

The behaviour of the update feature can be configured in the preferences dialog ("Extras"
"Preferences..."). If the Internet can only be accessed via a proxy, address, port, user name and password
can be entered here. But in enterprise networks, using the Internet Explorer settings will mostly be the
easiest way.

3.12 Upload projects to Robotino and execute them

Since Robotino View version 2.1.0 and Robotino flash card 2.0 it has been possible to upload projects to
Robotino via FTP and directly execute them from Robotino View. This function is accessible via Robotino
Upload project.

The first time the upload dialog is called the first Robotino device's current IP address will be entered into
the "Robotino IP address" input field. If there is no Robotino device in the current project, the input field
remains empty.

When the dialog is opened, the directory view in Robotino will be updated. The execution of an action is

displayed by an animation. The view update can also be invoked via the button . Further details about
browsing the directory structure on Robotino can be found in the section Browse Robotino .

The button is used to upload the current project into the currently viewed directory. Further details
about uploading and executing projects can be found in the section Upload and execute .

21

22

Using Robotino® View

© Festo Didactic GmbH & Co. KG 21

3.12.1 Browse Robotino

Since version 2.0 of Robotino's flash card a FTP and a Telnet server are installed on the Ubuntu Linux
system. FTP is used to display the files on Robotino and to upload projects.

After the first login the directory /home/robotino is displayed. In this case there are the subdirectories
"examples" and "programs" and the Robotino View project "Unnamed" in the current directory. By
clicking on one of the directories, the view is updated and the contents of the selected directory is shown.
By clicking on a Robotino View project, the execution of this project on Robotino is started. See Upload
and execute .22

© Festo Didactic GmbH & Co. KG

Using Robotino® View

22

The FTP client integrated in Robotino View uses the user login "robotino" with password "robotino". Thus
it is possible to log in e.g. with FileZilla and create subdirectories or remove uploaded projects.

3.12.2 Upload and execute

Before executing a project it is recommendet to check if the Robotino View version installed on Robotino
is the newest one. Package upgrade on Robotino is described in the section Upgrade Robotino Packages

.

By clicking on a Robotino View project in the directory view the execution of this project on Robotino
with the Robotino View Interpreter is invoked. Before the execution of the project starts, the interpreter
must be loaded. This process takes some seconds. The log window shows the current state.

23

Using Robotino® View

© Festo Didactic GmbH & Co. KG 23

After clicking on a Robotino View project a Telnet session is established with user login "robotino" and
passwort "robotino". Immediately after the message "Loading project", the execution starts. The process
can be canceled any time.

In the window next to the progress indicator the values of the global variables of the project executed on
Robotino are displayed. The update speed can be configured in Extras Options... Upload & Execute
Debug interval.

3.13 Upgrade Robotino packages

Since Robotino View version 2.4.0 and Robotino flash card version 2.0 it has been possible to upgrade the
Linux packages installed on Robotino from Robotino View. This function is accessible via Robotino
Software update.

The first time the upgrade dialog is called the first Robotino device's current IP address will be entered
into the "Robotino IP address" input field. If there is no Robotino device in the current project, the input
field remains empty.

© Festo Didactic GmbH & Co. KG

Using Robotino® View

24

When the dialog is opened, the package information will be refreshed. During the refresh the whole
application is locked. This action can be easily canceled, though.

A refresh can be forced via the symbol .

After a successful refresh the versions of local packages and packages installed on Robotino are
displayed. The status symbols have the following meanings:

 No information is available or installed version is not up-to-date

 The package installed on Robotino is up-to-date

The package "robotino-firmware" is special. The upgrade routine checks if there is an EA09 IO board in
Robotino. If an EA09 IO board is found, the version number will be retrieved directly from the IO board. If

no EA09 board is present, the symbol will be displayed instead of the version number. However, the

package's status is because the package "robotino-firmware" needn't be installed.

Using Robotino® View

© Festo Didactic GmbH & Co. KG 25

In the first column of the version view, packages can be added to or removed from the upgrade process.
By default the packaged "openrobotino1", "openrobotino2" and "robview2" are designated for an
upgrade.

In the screenshot above, the package "robview" installed on Robotino is not up-to-date. The local version
is 2.5.0. On Robotino, the old version 2.2.4 is installed. Installation of new packaged is invoked with the

symbol . The upgrade dialog shows that the action is performed. In the log windows the progress can
be tracked. When the installation has been finished, the version view will be refreshed.

3.13.1 Robotino firmware installation

The package "robotino-firmware" is special. The upgrade routine checks if there is an EA09 IO board in
Robotino. If an EA09 IO board is found, the version number will be retrieved directly from the IO board. If

no EA09 board is present, the symbol will be displayed instead of the version number. However, the

package's status is because the package "robotino-firmware" needn't be installed.

As the upgrade of Robotino's firmware by the package "robotino-firmware" is critical, this package won't
be upgraded by default. Only if the exact reason for an upgrade is known, this packages should be added
to the upgrade process. The installation of the firmware is described in the section Robotino firmware
installation.

The firmware of the microcontroller (a NXP LPC 2378) on that IO board can be upgraded from Robotino's
PC104. This process is critical. A failure of the firmware upgrade results in the following effects:

1. Robotino can no longer be turned off by pressing the On/Off button.

2. Pressing the On/Off button turns on Robotino. When the button is released, Robotino is turned off
immediately.

concerning 1) By removing the command bridge, Robotino can be turned off

concerning 2) The On/Off button must be held until an other firmware upgrade was successful

To just upgrade the firmware (or repair it), only the "robotino-firmware" package should be selected. Then

the installation can be forced via the button "Force Update".

© Festo Didactic GmbH & Co. KG

Using Robotino® View

26

3.13.2 Interna

The upgrade process is based on a combination of Telnet, FTP and Linux commands concerning apt.

First the file pkgtools.tar from the directory install_folder\packages is copied into /home/robotino/.
packages. Via Telnet the file is unpacked. The script pkginfo.sh provides information about the installed
packages.

The packages to be installed are copied via FTP from install_folder\packages to /home/robotino/.
packages. Additionally the file Packages.gz is copied. It contains package informations.

Initially, the script pkginstall.sh modifies /etc/apt/sources.list and enters the directory /home/robotino/.
packages as only package source. Then apt-get is used to install the packages.

pkgremove.sh forces removal of packages.

startOpenRobotino1.sh is invoked to restart the Robotino deamons.

4 Examples

4.1 Control programs

In this chapter a simple control program with alternative branches is realized.

Examples

© Festo Didactic GmbH & Co. KG 27

4.1.1 Tutorial 2

This exercise shows how a control program with alternative branches is created. The complete program is
located int the file examples/sfc/tutorial2.rvw2.

The complete control program looks as shown in figure 1.

Fig. 1: the complete control program

In Step1 the value of a is changed. Thus in every cycle of the program one of the Steps Step2, Step3 and
Step4 will be executed. Step5 compares the results produced by the previous steps. After the 6th
execution of Step5 the program is stopped. Otherwise it continues with Step1.

Create a new project

Create a new project by

selecting File New

pressing Ctrl + N

selecting the symbol for creating a new project in the tool bar .

© Festo Didactic GmbH & Co. KG

Examples

28

The main program contains the steps Init and Step1.

Create global Variables

First, create the following global variables :

timer

a

b

step2count

step3count

step4count

step5count

Assign the initial value -1 to "a". All other variables keep their initial value 0.

Program Step1

In this sub-program the global variable "a" is incremented by 1. To make sure that the value of "a" is
always between 0 and 2, "a" will be calculated Modulo 3 and rewritten to "a". The value of "b" will just
be set 0.

15

Examples

© Festo Didactic GmbH & Co. KG 29

Create steps Step2, Step3 and Step4

Now the steps will be created next to each other in alternative branches. To do that, select the transition
condition below Step1.

You can see that the transition condition is selected by a dashed line round the condition.

Now click on the symbol to add an alternative branch on the right side .

Expand the branching you have just created by selecting the transition condition on the right and

selecting the "Alternative branch right" symbol again.

Now create three Steps in those three alternative branches and call them Step2, Step3 and Step4. To do

that, select the entering condition of a branch and click on the "insert step after" symbol. Then
assign a sub-program of the same name to each step. To do that, double-click on the step and enter the
name for the sub-program in the following dialog box. Alternatively, you can create a new sub-program

with the tool bar button "Create new subprogram" and assign it to the step.

© Festo Didactic GmbH & Co. KG

Examples

30

The entering and exit conditions of all three alternative branches are false at the moment. Change the
entering conditions to a == 0, a == 1 and a == 2. Use timer == 10 as exit condition for all branches.
Finally, change the final jump's destination from Init to Step1.

If you start the main program now, the program will hang in Step2 because "a" is 0 during the first cycle
and the global variable "timer" is not altered.

Program Step2, Step3 and Step4

The sub-programs assigned to the steps Step2 to Step4 are empty at the moment. The sub-program Step2
is shown below.

Examples

© Festo Didactic GmbH & Co. KG 31

Every 200ms the Arbitrary Waveform Generator creates a pulse of 100ms width and height 1. The settings
for the Arbitrary Waveform Generator are shown below.

I.e. every 200ms there is a rising edge from 0 to 1. With every rising edge the counter increments its value
by 1. After 2s the value will be 10. When the value of the counter is 10, the result of the comparison of the
constant and the counter's value will be added to the current value of step2Count. As long as the
comparision results in false, 0 is added. As soon as the comparision results in true, 1 is added. At the end
of every calculation step of the sub-program, the transition condition below the step in the main program
is evaluated. When the global variable "timer" has the value 10, the sub-program will be left.

The sub-programs of Step3 and Step4 are built equivalently. Select all in Step2 (Ctrl+A) and copy it to
Step3 and Step4. The only difference consists in the fact that step3count respectively step4count are
read and written.

Once you start the main program, Step2, Step3 and Step4 will be executed cyclically for 2s each.

© Festo Didactic GmbH & Co. KG

Examples

32

Create and program Step5

To add a new step after the alternative branching, select the final jump and click on the symbol to add a

step before . Now create a sub-program named Step5 and assign it to Step5 just created. Change the
transition condition below Step5 to b>0 && timer == 10.

The sub-program Step5 is similar to Step2 to Step4. Copy Step2 to Step5 and change step2count to
step5count. Beyond setting the global variables "timer" and "step5count" also a check is performed if
the condition step2count >= step3count >= step4count is valid. If this is the case, the global variable "b"
is set to 1. Otherwise "b" is 0. The condition must always be true when in a correct program execution
because Step2, Step3 and Step4 are executed one after another because Step1 increments "a" by 1 in
every cycle.

Examples

© Festo Didactic GmbH & Co. KG 33

If the main program is started now, Step5 remains active for 2s if "b" is greater than 0.

Create program termination and jump to Step1

Now the program should be terminated when the value of "step5count" has reached 6. To achieve this,
insert an alternative branch below Step5. Select the transition condition below Step5 and klick on the

symbol to insert an alternative branch on the left . Select the new branch's transition condition (at the

moment it is false) and click on the symbol to create a new jump . Change the transition condition to
step5count == 6 and select TERMINATE as new jump destination.

The main program now looks as it was shown at the beginning.

By the way, the alternative branch containing the jump to TERMINATE must be left of the branch with the
condition b>0 && timer == 10 because the initial conditions of alternative branches are evaluated from
left to right. In the first 6 cycles the condition step5count == 6 is not fulfilled. So the second branch's
condition is evaluated.

One run of the main program lasts 24s now.

© Festo Didactic GmbH & Co. KG

Examples

34

4.2 Logic

In this chapter well-known electrical circuits are realized with logical modules.

4.2.1 Multiplexer

4.2.2 FlipFlop

5 Function block library

The control programs created with Robotino® View consist of interlinked function blocks.

These are located in the function block library and can be inserted into a sub-program via Drag&Drop.9

Function block library

© Festo Didactic GmbH & Co. KG 35

Function blocks are assigned to different categories. By clicking onto a category name with the left mouse
button,
the category folder is expanded. The following categories are available:

Name Description

Logic Components as recognised from electronic logic modules

Mathematics Simple mathematical operations

Vector analysis Analysis using two-dimensional vectors

Display Function blocks for visualization

Image processing Basic image processing functionalities

Generators Generation of signals

Filter Smoothing of signals

Navigation Driving mobile Robots

Input devices Function blocks for the interaction of the user with the control program

Data exchange Exchange data with external programs

My function blocks Tutorials for the development of own function blocks

5.1 Logic

The Logic category contains components as recognized from the electronic logic modules.

5.1.1 Counter up

The counter counts the number of events at its Input connector

Inputs Type Defaul
t

Description

Input bool false Counter input. Counter value is increased if the input changes from false to
true and/or from true to false.

Initial value int32 0 Counting starts with the value given here at sub-program start or if Reset is
true.

Reset bool false The counter is reset to its initial value if this input is true.

35

54

69 69

77

79

91

95

96

116

118

171

© Festo Didactic GmbH & Co. KG

Function block library

36

Outputs

Output int32 Counter value

5.1.1.1 Dialog

Count on rising edge Increment the counter by 1 if the input at time t is false and at time t+1 true.

Count on falling edge Increment the counter by 1 if the input at time t is true and at time t+1 false.

5.1.1.2 Example

Function block library

© Festo Didactic GmbH & Co. KG 37

The "Arbitrary Waveform Generator " generates a sin waveform with amplitude 2 and frequency 1 Hz.
The output of the generator is of type float. Values less equal 0 are converted to false. Value greater 0 are
converted to true (see type conversion). The counter counts on rising edge, i.e. when the input
changes from false to true. This happens exactly once per second at the beginning of the sine wave. The
counter values represents therefore the time in seconds since sub-program start.

The following example shows how to use the initial value input to count over sub-program boundaries.
The main program executes Step1 and Step2 sequentially. After Step2 is finished, we restart with Step1.

Hauptprogramm

Step1

The Counter writes its result into the global variable "count". After restart of Step1 the global variable
count is used as inital value for the Counter. Step1 is active until the second "Arbitrary Waveform
Generator " generates a value greater 9. This happens after 10s.

Step2

92

20

92

© Festo Didactic GmbH & Co. KG

Function block library

38

Step2 is also 10s active.

5.1.2 Counter down

Counter down is similar to Counter up . The only difference is that the counting value is decremented
by 1 if a counting event occurs.

5.1.2.1 Dialog

See dialog of Counter up .

35

36

Function block library

© Festo Didactic GmbH & Co. KG 39

5.1.3 Multiplexer

The Multiplexer connects its output to a selectable input.

Inputs Type Defaul
t

Description

Control
signal

int 0 Determines the input that is connected to the output. If the control signal is
less 0 or greater equal the number of inputs the output is 0.

Input 0 float 0 The value of input 0 is available at the output if the control signal is 0.

...

Input 9 float 0 The value of input 9 is available at the output if the control signal is 9.

Outputs

Output float The value of an input or 0 if the control signal is less 0 or greater equal the
number of inputs.

5.1.3.1 Dialog

© Festo Didactic GmbH & Co. KG

Function block library

40

5.1.3.2 Example

see also Examples Logic Multiplexer

5.1.4 Demultiplexer

The demultiplexer connects one input to a selectable output.

Inputs Type Defaul
t

Description

Control
signal

int 0 Determines the output that is connected to the input. If the control signal is
less 0 or greater equal the number of outputs all outputs are reset to 0.

Input float 0 The value of an output if the control signal is greater equal 0 and less the
number of outputs.

Outputs

Output 0 float Value of the input if the control signal is 0, otherwise 0.

...

34

Function block library

© Festo Didactic GmbH & Co. KG 41

Output 9 float Value of the input if the control signal is 9, otherwise 0.

5.1.4.1 Dialog

5.1.4.2 Example

5.1.5 AND

© Festo Didactic GmbH & Co. KG

Function block library

42

The Output of the AND is true only if all Inputs are true. See type conversion how numbers are
converted to bool.

Inputs Type Defaul
t

Description

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see table below

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 0

1 0

1 0

1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 1 0

1 1 1 0

1 1 1 0

1 1 1 1 0

1 0

1 1 1 1 1 1 1 1 1

20

Function block library

© Festo Didactic GmbH & Co. KG 43

5.1.5.1 Dialog

5.1.5.2 Example

5.1.6 AND FL

The output Q of the AND FL (with edge control) is only set to true if all inputs are true, and if at least one
input was false during the previous cycle. See type conversion how numbers are converted to bool.

Inputs Type Defaul
t

Description

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see timing diagram

Timing diagram for the AND FL and four inputs.

20

© Festo Didactic GmbH & Co. KG

Function block library

44

5.1.6.1 Dialog

Function block library

© Festo Didactic GmbH & Co. KG 45

5.1.6.2 Example

When the output of the generator changes from 0 to 1 the output of the AND FL is true for one cycle.

5.1.7 NAND

The Output of the NAND is false only if all Inputs are true. See type conversion how numbers are
converted to bool.

Inputs Type Defaul
t

Description

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see table below

20

© Festo Didactic GmbH & Co. KG

Function block library

46

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 1

1 1

1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 0

5.1.7.1 Dialog

5.1.7.2 Example

see Example Logic FlipFlop 34

Function block library

© Festo Didactic GmbH & Co. KG 47

5.1.8 NAND_FL

The output Q of the NAND with edge control is only set to true if at least one input is false, and if all inputs
were true during the previous cycle. See type conversion how numbers are converted to bool.

Inputs Type Defaul
t

Description

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see timing diagram

Timing diagram for the NAND with edge control and four inputs.

20

© Festo Didactic GmbH & Co. KG

Function block library

48

5.1.8.1 Dialog

5.1.9 OR

The Output of the OR is true only if at least one Input is true. See type conversion how numbers are
converted to bool.

Inputs Type Defaul
t

Description

Input 1 bool false

...

Input 8 bool false

Outputs

Q bool see table below

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 0

1 1

1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1 1

1 1

20

Function block library

© Festo Didactic GmbH & Co. KG 49

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 1

5.1.9.1 Dialog

5.1.9.2 Example

5.1.10 XOR

The Output of the XOR is true if the inputs have different values. See type conversion how numbers
are converted to bool.

Inputs Type Defaul
t

Description

Input 1 bool false

Input 2 bool false

20

© Festo Didactic GmbH & Co. KG

Function block library

50

Outputs

Q bool see table below

Inputs

1 2 Q

0 0 0

0 1 1

1 0 1

1 1 0

5.1.10.1 Example

5.1.11 NOT

The Output of the NOT is true if the input is false. See type conversion how numbers are converted to
bool.

Inputs Type Defaul
t

Description

Input bool false

Outputs

Q bool see table below

Inputs

1 Q

0 1

1 0

20

Function block library

© Festo Didactic GmbH & Co. KG 51

5.1.11.1 Example

The example shows a especialness of the NOT function block. Input and output values are not shown next
to its input or output connector. This has the advantage that the NOT takes only a very small amount of
space and the data display does not overlap with data displayed by other function blocks.

5.1.12 NOR

The NOR's Output Q is true if all inputs are false. See type conversion how numbers are converted to
bool.

Inputs Type Defaul
t

Description

Input 1 bool false

...

Input 8 bool false

Outputs

Q bool see table below

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 1

1 0

1 0

1 1 0

1 0

1 1 0

1 1 0

20

© Festo Didactic GmbH & Co. KG

Function block library

52

1 1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 1 0

1 1 1 0

1 1 1 0

1 1 1 1 0

1 0

1 1 1 1 1 1 1 1 0

5.1.12.1 Dialog

5.1.12.2 Example

5.1.13 Latching relay

Output Q is set by input S. Input R resets output Q. See type conversion how numbers are converted to
bool.

20

Function block library

© Festo Didactic GmbH & Co. KG 53

Inputs Type Defaul
t

Description

S bool false If S is true Q becomes true.

R bool false If R is true Q is reset to false. R overrules S.

Par bool false Remanence:

false: No remanence

true: The current status is saved to remanent memory (independent of S or R).

Outputs

Q bool Q is switched to true by S and remains true until R becomes true.

Timingdiagramm

5.1.14 Sample and hold element

If Sample is set false, the signal at Input can be kept at the current value. See type conversion how
numbers are converted to bool.

Inputs Type Defaul
t

Description

Input float 0 Input signal

Sample bool false If true, Output will be connected to Input. If false, the current value will be
frozen at Output.

Outputs

20

© Festo Didactic GmbH & Co. KG

Function block library

54

Output float 0 Last value of Input before Sample has been changed from true to false.

5.2 Mathematics

This category contains simple mathematical operations.

5.2.1 Arithmetic operations

5.2.1.1 Modulo

In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for
integers, where numbers "wrap around" after they reach a certain value—the modulus. Modular
arithmetic was introduced by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in
1801. (Source: http://en.wikipedia.org/wiki/Modular_arithmetic)

Inputs Type Defaul
t

Description

Dividend int 0

Divisor int 1

Outputs

Remainder int Dividend mod Divisor

5.2.1.2 Division

Calculates the quotienten from dividend and divisor. See http://en.wikipedia.org/wiki/Division_
(mathematics).

Inputs Type Defaul
t

Description

Dividend float 0

Divisor float 1

http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Division_(mathematics)

Function block library

© Festo Didactic GmbH & Co. KG 55

Outputs

Quotient float Dividend divided by divisor.

If the dividend is unequal to 0 and the divisor equals 0 the simulation is stopped with the following error:

5.2.1.3 Multiplication

The Multiplication function block multiplies floating point numbers. See also http://en.wikipedia.org/wiki/
Multiplication.

Inputs Type Defaul
t

Description

Factor 1 float 1

...

Factor 10 float 1

Outputs

Product float "Factor 1" * "Factor 2" * ... * "Factor 10"

http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Multiplication

© Festo Didactic GmbH & Co. KG

Function block library

56

5.2.1.3.1 Dialog

5.2.1.4 Subtraction

The Subtraction function block calculates the difference between the minuend and up to 10 subtrahends.
See also http://en.wikipedia.org/wiki/Subtraction.

Inputs Type Defaul
t

Description

Minuend float 0

Subtrahend
1

float 0

...

Subtrahend
10

float 0

Outputs

Difference float Minuend - "Subtrahend 1" - "Subtrahend 2" - ... - "Subtrahend 10"

http://en.wikipedia.org/wiki/Subtraction

Function block library

© Festo Didactic GmbH & Co. KG 57

5.2.1.4.1 Dialog

5.2.1.5 Addition

The Addition function block adds up to 10 summands. See also http://en.wikipedia.org/wiki/Addition.

Inputs Type Defaul
t

Description

Summand 1 float 0

...

Summand
10

float 0

Outputs

Sum float "Summand 1" + "Summand 2" + ... + "Summand 10"

http://en.wikipedia.org/wiki/Addition

© Festo Didactic GmbH & Co. KG

Function block library

58

5.2.1.5.1 Dialog

5.2.2 Comparison Operations

5.2.2.1 Inequal

The output is true, if the absolute value of Input1 - Input2 is greater equal epsilon, with epsilon =
0.0000002384185792.

Inputs Type Defaul
t

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool fabs(Input1 - Input 2) >= epsilon

5.2.2.2 Equal

The output is true, if the absolute value of Input1 - Input2 is less epsilon, with epsilon =
0.0000002384185792

Function block library

© Festo Didactic GmbH & Co. KG 59

Inputs Type Defaul
t

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool fabs(Input1 - Input 2) < epsilon

5.2.2.3 Less equal

The Output is true, if Input1 is less equal Input2.

Inputs Type Defaul
t

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" less or equal "Input2"

5.2.2.4 Less

The Output is true, if Input1 is less Input2.

Inputs Type Defaul
t

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" less "Input2"

© Festo Didactic GmbH & Co. KG

Function block library

60

5.2.2.5 Greater equal

The Output is true, if Input1 is greater equal Input2.

Inputs Type Defaul
t

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" greater or equal "Input2"

5.2.2.6 Greater

The Output is true, if Input1 is greater Input2.

Inputs Type Defaul
t

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" greater "Input2"

5.2.3 Functions

5.2.3.1 Absolute Value

Gives the absolute value of Input.

Inputs Type Defaul
t

Description

Function block library

© Festo Didactic GmbH & Co. KG 61

Input float 0

Outputs

Output float abs(Input)

5.2.3.2 Transfer Function

With the transfer function, it is possible to realize any mapping of the input x to the output y.

Inputs Type Defaul
t

Description

x float 0

Outputs

x float see Dialog

5.2.3.2.1 Dialog

With the dialog of the Transfer function function block it is possible to define interpolation points for the
mapping y(x). The default interpolation points are

p0 = (x0, y0) = (0, 0)

p1 = (x1, y1) = (10, 10)

61

© Festo Didactic GmbH & Co. KG

Function block library

62

These points define the following mapping y(x)

y = y0 if x <= x0

y = x if x > x0 and x <= x1

y = y1 if x > x1

Boundaries

p0 = (x0, y0) is the first interpolation point

pn = (xn, yn) is the last interpolation point

If x < x0: y = y0

If x > xn: y = yn

Mapping

If we have a list of interpolation points p0, p1, ... pn the mapping y(x) is given by:

y = y0 if x <= x0

y = (y1 - y0) / (x1 - x0) * (x - x0) + y0 if x > x0 and x <= x1

y = (y2 - y1) / (x2 - x1) * (x - x1) + y1 if x > x1 and x <= x2

...

y = yn if x > xn

Move points

Interpolation points can be moved, added and removed. To move an interpolation points you can use the
Graphics-View and move the points with the mouse pointer. In the Table-View the x,y values of the
interpolation points can be edited. The x value of an interpolation point can never be smaller than the x
value of the earlier interpolation point and never be greater than the x value of the following interpolation
point.

Adding points

In the Graphics-View you can add a new point anywhere by using the context menu available by clicking
with the right mouse button.

In the Table-View the context menu is available by clicking with the right mouse button into a row.

Function block library

© Festo Didactic GmbH & Co. KG 63

You can choose to insert the new point before or after the current row.

Delete points

Points are deleted in both the Graphics-View and the Table-View via the context menu after right mouse
click onto a point or row. If there is only a single interpolation point left, the function for deleting this point
is deactivated.

Import/Export of interpolation points

The clipboard can be used to import and export the list of interpolation points. By this data can be
exchanged with programs like Excel or Matlab. The function for Import/Export is available via the context
menu in both the Graphics and Table-View.

© Festo Didactic GmbH & Co. KG

Function block library

64

5.2.3.2.2 Example

The Counter up is incremented every simulation step. The counting value is restricted to the range [0,10].
The Transferfunction defines a sine wave with 10 interpolation points.

5.2.3.3 Minimum

The value of the output is the minimal value from all inputs.

Inputs Type Defaul
t

Description

Function block library

© Festo Didactic GmbH & Co. KG 65

Input 1 float 1e+03
7

...

Input 10 float 1e+03
7

Outputs

Output float min("Input 1", "Input 2", ... , "Input 10")

1e+037 = 10 pow 37

largest possible floating point number

5.2.3.3.1 Dialog

5.2.3.4 Maximum

The value of the output is the maximal value from all inputs.

Inputs Type Defaul
t

Description

Input 1 float -
1e+03
7

...

© Festo Didactic GmbH & Co. KG

Function block library

66

Input 10 float -
1e+03
7

Outputs

Output float max("Input 1", "Input 2", ... , "Input 10")

-1e+037 = - (10 pow 37)

smallest possible floating point number

5.2.3.4.1 Dialog

5.2.3.5 Scale

Easy scaling of values.

Inputs Type Defaul
t

Description

x float 0

Outputs

y float see Dialog 67

Function block library

© Festo Didactic GmbH & Co. KG 67

5.2.3.5.1 Dialog

Choose a function from the combo box. The default function is the identity mapping.

Depending on the function selected the parameters are editable or not. If you choose the function
y=a*x+b, you can edit the parameters a and b.

The mapping here is y(x) = 345 * x - 39874,4239

5.2.4 Arrays

5.2.4.1 Float array composer

© Festo Didactic GmbH & Co. KG

Function block library

68

The Float array composer creates a float array from up to 10 float values or arrays. For the type conversion
from float values to float arrays see type conversion .

Inputs Type Defaul
t

Description

Index 1 float
array

empty
array

...

Index 10 float
array

empty
array

Outputs

Array float
array

empty
array

(Index 1, ..., Index 10)

5.2.4.1.1 Dialog

5.2.4.2 Float array decomposer

The Float array decomposer extracts a sub array from a float array.

Inputs Type Defaul
t

Description

20

Function block library

© Festo Didactic GmbH & Co. KG 69

Array float
array

empty
array

The array decompose.

Start index int 1 The value at position Start index of the array will be the first value of the
resulting array.

Length int 1 The resulting array consists of Length values beginning at the value at
position Start index of the input array.

Outputs

Sub array float
array

empty
array

(Array[Start index], ..., Array[Start index + Length - 1])

5.2.4.3 Float array index access

The index access module allows access to the single values of a float array.

Inputs Type Defaul
t

Description

Array float
array

empty
array

Array to be accessed.

Index int 1 Index of the value to be accessed.

Outputs

Value float 0 Value at position Index.

5.3 Vector analysis

This category contains the basic vector analysis methods for two-dimensional vectors.

5.3.1 Vector operations

5.3.1.1 Dot product

Gives the scalar product (or dot product) of two vectors. See also http://en.wikipedia.org/wiki/
Scalar_product.

http://en.wikipedia.org/wiki/Scalar_product
http://en.wikipedia.org/wiki/Scalar_product

© Festo Didactic GmbH & Co. KG

Function block library

70

Inputs Type Defaul
t

Description

Vector 1 vecto
r2f

(0, 0)

Vector 2 vecto
r2f

(0, 0)

Outputs

Product float

5.3.1.2 Subtraction

The Subtraction function block calculates the difference between the minuend and up to 10 subtrahends.
See also http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction.

Inputs Type Defaul
t

Description

Minuend vecto
r2f

(0, 0)

Subtrahend
1

vecto
r2f

(0, 0)

...

Subtrahend
10

vecto
r2f

(0, 0)

Outputs

Difference vecto
r2f

Minuend - "Subtrahend 1" - "Subtrahend 2" - ... - "Subtrahend 10"

http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction

Function block library

© Festo Didactic GmbH & Co. KG 71

5.3.1.2.1 Dialog

5.3.1.3 Addition

The Vector-Addition function block adds up to 10 summands. See also http://en.wikipedia.org/wiki/
Vector_addition#Vector_addition_and_subtraction.

Inputs Type Defaul
t

Description

Summand 1 vecto
r2f

(0, 0)

...

Summand
10

vecto
r2f

(0, 0)

Outputs

Sum vecto
r2f

"Summand 1" + "Summand 2" + ... + "Summand 10"

http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction
http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction

© Festo Didactic GmbH & Co. KG

Function block library

72

5.3.1.3.1 Dialog

5.3.1.4 Norm

Calculates the Euclidean norm of the input vector. See also http://en.wikipedia.org/wiki/Vector_norm.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Outputs

Norm float

5.3.1.4.1 Example

The norm of vector (1, 1) is square root of 1+1 = 1.41421....

http://en.wikipedia.org/wiki/Vector_norm

Function block library

© Festo Didactic GmbH & Co. KG 73

5.3.2 Element operations

5.3.2.1 Division

Per element division of Vector by Divisor.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Divisor float 1

Outputs

Result vecto
r2f

Vector = (x0, x1)

Result = (x0 / Divisor, x1 / Divisor)

5.3.2.2 Subtraction

Per element subtraction of Minuend from Vector.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Minuend float 0

Outputs

Result vecto
r2f

Vector = (x0, x1)

Result = (x0 - Minuend, x1 - Minuend)

© Festo Didactic GmbH & Co. KG

Function block library

74

5.3.2.3 Addition

Per element addition of Summand to Vector.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Summand float 0

Outputs

Result vecto
r2f

Vector = (x0, x1)

Result = (Summand + x0, Summand + x1)

5.3.2.4 Multiplication

Per element multiplication of vector by factor.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Factor float 1

Outputs

Result vecto
r2f

Vector = (x0, x1)

Result = (Factor * x0, Factor * x1)

5.3.3 Transformations

Function block library

© Festo Didactic GmbH & Co. KG 75

5.3.3.1 Vector to Polar

Split up Vector into its polar components. See also http://en.wikipedia.org/wiki/Polar_coordinate_system
.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Outputs

Length float The length (norm) of Vector

Phi float The angle in degrees between Vector and the x-axis.

5.3.3.2 Vector to Cartesian

Split up Vector into its cartesian components. See also http://en.wikipedia.org/wiki/
Cartesian_coordinate_system.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Outputs

x float x component of Vector

y float y component of Vector

5.3.3.3 Polar to Vector

Create a vector from its length and orientation.

http://en.wikipedia.org/wiki/Polar_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system

© Festo Didactic GmbH & Co. KG

Function block library

76

Inputs Type Defaul
t

Description

Length float 0 Length (norm) of the Vector.

Phi float 0 Angle in degrees between Vector and the x-axis.

Outputs

Vector vecto
r2f

Vector with length Length and orientation Phi.

5.3.3.4 Cartesian to Vector

Create a vector from its cartesian components.

Inputs Type Defaul
t

Description

x float 0 x component.

y float 0 y component.

Outputs

Vector vecto
r2f

Vector (x, y).

5.3.3.5 Rotate

Rotates the vector by the specified value in degrees.

Inputs Type Defaul
t

Description

Vector vecto
r2f

(0, 0)

Phi float 0 Rotation angle

Outputs

Function block library

© Festo Didactic GmbH & Co. KG 77

Result vecto
r2f

Vector rotated by Phi.

5.3.3.5.1 Example

5.4 Display

This category contains the function blocks for the visualization of data.

5.4.1 Oscilloscope

The Oscilloscope is used to visualize up to 16 channels.

Inputs Type Defaul
t

Description

Channel 0 float 0

Channel 1 float 0

...

Channel 16 float 0

© Festo Didactic GmbH & Co. KG

Function block library

78

5.4.1.1 Dialog

The dialog visualizes the signals on the channels.For every channel, settings can be changed, like
amplification, e.g. It is also possible to deactivate single channels.

5.4.2 Laser range finder data display

The Laser range finder data displays the data from a optional laser-scanner

Input Typ Description

Function block library

© Festo Didactic GmbH & Co. KG 79

Data laser range
data

5.4.2.1 Dialog

5.5 Image processing

This category contains function blocks for image processing.

5.5.1 Segmenter

The Segmenter function block partitions the input image in multiple segments. The output image contains
a list of segments found.

Inputs Type Defaul
t

Description

Input imag
e

Input image

Outputs

Output imag
e

Output image augmented with the list of segments found

© Festo Didactic GmbH & Co. KG

Function block library

80

5.5.1.1 Dialog

Button
/
Displa
y

Description

0 Display of the input image and of segments found

1 When checked the input image is displayed

2 When checked found segments are display

3 When checked the current input image is hold

4 Add the current selection in the input image to the list of segments

5 Delete a segment

6 Move segment up

7 Move segment down

8 List of segments

9 Selector of the color channel for segment optimization

10 Display of values within the selected channel of the currently active segment

11 Close gaps within the values of the selected channel

12 Thin out values of the selected channel

To recognize the red square as a single segment, mark a region within the red square with the mouse.

Function block library

© Festo Didactic GmbH & Co. KG 81

Click onto the + (button 4) to add your selection to the list of segments.

© Festo Didactic GmbH & Co. KG

Function block library

82

The center of gravity of the segment is displayed with a cross. When the image is changing (deactivate
the Freeze image checkbox) the center of gravity moves with the red square. Now repeat the procedure to
add the green square to the list of segments.

Now there are two segments within the list of segments. The currently selected segment is marked with a
bold cross.

Function block library

© Festo Didactic GmbH & Co. KG 83

5.5.1.2 Example

The image reader operates in test mode and generates a sequence of test images. The segmenter
searches for connected regions within the input image that fit the colors in the list of segments. The
center of gravity of the segments found is shown.

5.5.2 Segment Extractor

Get the position and size of a segment from an image augmented with a list of segments by the
Segmenter function block.

Inputs Type Defaul
t

Description

Input imag
e

Augmented image

Selected
segment

int 0 Number of the segment information is queried from.

Minimum
area

int 200 The Segment found output will become true only if the segment contains at
least number of pixel given here.

118

79

© Festo Didactic GmbH & Co. KG

Function block library

84

Outputs

x int x-coordinate of the center of gravity of the segment found. If no segment is
found x=0.

y int y-coordinate of the center of gravity of the segment found. If no segment is
found y=0.

Area int Number of pixel within the segment. If no segment is found Area = 0.

Segment
found

bool True if the segment is found. False otherwise.

5.5.2.1 Dialog

Selected
segment

The spinbox is editable if the input connector "Selected segment" is not connected. The
segment number to search for.

Minimum
area

The spinbox is editable if the input connector "Minimum area" is not connected. The minimum
number of pixel the segment must contain.

Shows the segments within the input image. The selected segment is marked by a cross (if the segment is
found).

Function block library

© Festo Didactic GmbH & Co. KG 85

5.5.2.2 Example

The image reader creates a test sequence with three colored squares. The segmenter searches the image
for red, green and blue regions. The segment extractor looks for the segment with number 1 (the green
segment) and marks its center of gravity with a cross.

5.5.3 Line Detector

Searches for a line in the input image.

Inputs Type Defaul
t

Description

Input imag
e

Input image

Threshold int 0 The threshold is defines the sensitivity of the line detection algorithm to
discontinuities within the image. To cancel noises choose a higher threshold.

Range: [0, 255]

Search start int 20 The algorithm starts searching for a line starting at "Search start" from the
bottom.

© Festo Didactic GmbH & Co. KG

Function block library

86

Search
height

int 20 The image is searched from the bottom up for the detection of edges. The
limit value defines the number of lines the image is searched starting at the
bottom plus "Search start" in order to detected a segment in the form of a
line.

Outputs

x int x-position of the line located at the bottom edge of the image

Line found bool True if a line is found. False otherwise.

5.5.3.1 Dialog

The area which is search for a line is marked by the horizontal red lines. The bottom line marks the
"Search start". The top line marks "Search start" + "Search height".

The red + marks the dark to light edge of the line seen from left to right.

Function block library

© Festo Didactic GmbH & Co. KG 87

5.5.3.2 Example

The image from Robotino's camera (here from the Robotino Simulator) is used as input for the line
detector. We use the Image Information function block to map the x position of the line from the range
[0, image width] to [-image width/2, image width/2] which is in our case [-160,160]. The scale function
block is used to switch the sign and to scale the output of the subtraction function block.

The value can be used directly to rotate Robotino so that Robotino turn right if the line is to its right and
turns left if the line is to its left. With a constant forward velocity Robotino follows the line.

5.5.4 ROI

Select an interesting region inside the input image (Region Of Interest, ROI).

Inputs Type Defaul
t

Description

89

66

56

© Festo Didactic GmbH & Co. KG

Function block library

88

Input imag
e

Input image

Outputs

Output imag
e

The output image is augmented with the ROI information. Later image
processing takes place inside the ROI only.

5.5.4.1 Dialog

The region of interest can be marked with the mouse.

Function block library

© Festo Didactic GmbH & Co. KG 89

5.5.4.2 Example

The Image reader generates a test sequence of images. The bottom Line Detector uses the whole image
while the upper Line Detector searches the ROI only.

5.5.5 Image Information

Get the width and height of the input image.

Inputs Type Defaul
t

Description

Input imag
e

Input image

© Festo Didactic GmbH & Co. KG

Function block library

90

Outputs

Breite int Image width in pixel.

Höhe int Image height in pixel.

5.5.5.1 Dialog

The dialog shows the input image.

5.5.5.2 Example

The images of the test sequence generated by the image reader have a resolution of 320 x 240 Pixel.

Function block library

© Festo Didactic GmbH & Co. KG 91

5.5.6 Colorspace conversion

Inputs Type Defaul
t

Description

Input imag
e

Input image

Outputs

Output imag
e

Converted image

5.5.6.1 Dialog

In the colorspace conversion dialog the target color space can be selected.

5.6 Generators

This category contains numerous function blocks to create signals.

© Festo Didactic GmbH & Co. KG

Function block library

92

5.6.1 Arbitrary waveform generator

Generation of adjustable waveforms. See also http://en.wikipedia.org/wiki/
Arbitrary_waveform_generator.

Inputs Type Defaul
t

Description

Outputs

Output float The generated signal.

5.6.1.1 Dialog

The upper part of the dialog is similar to the dialog known from the Transfer Function .

In addition the Arbitrary wavefrom generator has the following parameters and buttons:

AmplitudeThe output of the generator is multiplied by this value.

Time baseThe unit of the x-axis. In the current example with a time base of 100ms the value 10 is reached
after 1s.

Sine Generates interpolation point approximating a sine wave.

Cosine Generates interpolation point approximating a cosine wave.

61

http://en.wikipedia.org/wiki/Arbitrary_waveform_generator
http://en.wikipedia.org/wiki/Arbitrary_waveform_generator

Function block library

© Festo Didactic GmbH & Co. KG 93

Triangle Generates interpolation point approximating a triangle wave.

Square Generates interpolation point approximating a square puls wave.

5.6.1.2 Example

Robotino's Motor 1 rotates driven by a sine waveform.

5.6.2 Constant

© Festo Didactic GmbH & Co. KG

Function block library

94

Generation of a constant value. The type of the constant and also the graphical display changes with the
type of the connected input connector.

The input of the value can be performed directly within the program.

Inputs Type Default Description

Outputs

Value float,
int, bool

0 /
false

The value displayed.

5.6.3 Timer

Measures the time in milliseconds since program start. If reset is true, the measurement is restarted.

Inputs Type Defaul
t

Description

Reset bool false If true, the measurement is restarted.

Outputs

Time float Time in milliseconds since program start or since Reset changes from true to
false.

Function block library

© Festo Didactic GmbH & Co. KG 95

5.6.3.1 Example

Timer and Transfer Function generate a puls of amplitude 10 1s after program start.

5.6.4 Random generator

The random generator creates random numbers within a specific range.

Inputs Type Defaul
t

Description

Maximum float 1 Upper bound of the range.

Minimum float 0 Lower bound of the range.

Outputs

Value float 0 Random number between Minimum and Maximum.

5.7 Filter

This category contains function blocks for filtering and smoothing of signals.

61

© Festo Didactic GmbH & Co. KG

Function block library

96

5.7.1 Mean filter

Calculates the mean of the input value for up to 1000 steps.

Inputs Type Defaul
t

Description

Input float 0 Input signal

Outputs

Output float Mean value

5.7.1.1 Dialog

Depth is the number of previous time steps which are taken to calculate the mean value.

5.8 Navigation

This category comprises function blocks used for navigation.

5.8.1 Position Driver

The position driver is used to drive Robotino to a given position.

Function block library

© Festo Didactic GmbH & Co. KG 97

The position driver generates velocity and angular velocity set values to drive Robotino from the actual to
the set position.

Inputs Type Unit Description

x set float mm x coordinate of the set position in the global coordinate system.

y set float mm y coordinate of the set position in the global coordinate system.

phi set float deg phi angle of the set position in the global coordinate system.

x actual float mm x coordinate of the actual position in the global coordinate system.

y actual float mm y coordinate of the actual position in the global coordinate system.

phi actual float deg phi angle of the actual position in the global coordinate system.

restart bool Restart movement

Outputs

vx float mm/s set velocity in x direction in Robotino's local coordinate system

vy float mm/s set velocity in y direction in Robotino's local coordinate system

omega float deg/s set angular velocity.

Position
reached

bool Is true if vx=vy=0, i.e. the set position is reached.

Orientation
reached

bool Is true if omega=0, i.e. the set orientation is reached.

Pose
reached

bool Is true if both position and orientation are reached.

See Movements 100

© Festo Didactic GmbH & Co. KG

Function block library

98

5.8.1.1 Dialog

The dialog is split into three parts.

The upper part reflects the mapping from distance to the target position d (in mm) to the driving velocity v
(in mm/s).

Function block library

© Festo Didactic GmbH & Co. KG 99

The middle part reflects the mapping from angular distance to the target orientation d (in 1°) to angular
velocity omega (in 1°/s). The angular distance is in the range [0°, 180°]. Clockwise and counter clockwise
rotations are treated similar. Rotation will be performed clockwise or counter clockwise so that the angular
distance is minimal.

With the ComboBox

the kind of movement can be selected (see Movements). The selected movement becomes the active
movement

1. at program start.

2. when the input "restart" is set true.

The velocity ramp is the time in milliseconds after which 100% of the desired velocity is reached. This
avoids an abrupt jump of velocity at the beginning of the movement.

The angular velocity ramp is the time in milliseconds after which 100% of the desired angular velocity is
reached. This results in a damping of the movement when a new rotation begins.

5.8.1.2 Example

100

© Festo Didactic GmbH & Co. KG

Function block library

100

5.8.1.3 Movements

Four different kinds of movements are possible. Two of them are applicable for holonomic and
nonholonomic vehicles each. As Robotino has a holonomic drive - all three degrees of freedom can be
altered independently - Robotino can perform all four kinds of movement. For nonholonomic movements
the output vy is 0.

Movements start when the program starts or when the input "restart" becomes true. Effectively, in the
2nd case the movement begins when the input "restart" is reset to false.

Movement 1 - drive, turn - (holonomic)

Step 1: drive to the target position keeping the orientation at the initial position

Step 2: after reaching the target position turn until the target orientation is reached

Movement 2 - drive & turn - (holonomic)

Step 1: drive and simultaneously turn to the target orientation

Movement 3 - turn, drive, turn - (nonholonomic)

Step 1: turn to the driving direction

Step 2: drive to the target position

Step 3: after reaching the target position turn to the target orientation

Function block library

© Festo Didactic GmbH & Co. KG 101

Movement 4 - drive & turn, turn - (nonholonomic)

Step 1: Drive and turn in to driving direction

Step 2: after reaching the target position turn until the target orientation is reached

5.8.2 Constant pose

In the input box the pose is specified. Coordinates are separated by spaces characters.

Input Resulting pose

x y phi (x, y, phi)

x y (x, y, invalid)

x invalid Pose

invalid Pose

The orientation phi is specified in degrees.

Example:

10.5 20 120

© Festo Didactic GmbH & Co. KG

Function block library

102

results in x=10.5 y=20 and orientation=120°

Inputs Type Defaul
t

Description

Outputs

Pose pose invalid
pose

The constant pose's value. The value for the orientation is displayed in
radians at the output.

5.8.3 Pose composer

Inputs Typ Unit Defau
lt

Description

x float 0 The pose's x component.

y float 0 The pose's y component.

phi float degr
ees

0 The pose's orientation in degrees. The unit can be switched to radians in
the Dialog .

Outputs

Pose pose (0, 0,
0)

The pose (x, y, phi) composed from the single values. The value for the
orientation is displayed in radians at the output.

5.8.3.1 Dialog

102

Function block library

© Festo Didactic GmbH & Co. KG 103

Valid pose Specifies if the pose is valid. Invalid poses will be ignored in paths.

Orientation Specifies if the orientation is valid and its unit (degrees or radians).

5.8.4 Pose decomposer

Inputs Type Unit Defau
lt

Description

Pose pose (0, 0,
0)

Pose to decompose.

Outputs

x float 0 The pose's x component.

y float 0 The pose's y component.

phi float Grad 0 The pose's orientation in degrees. The unit can be switched to radians in
the Dialog .

Pose valid bool false true if the pose is valid.

Orientation
valid

bool false true if the orientation stored in the pose is valid.

5.8.4.1 Dialog

102

© Festo Didactic GmbH & Co. KG

Function block library

104

5.8.5 Path composer

Inputs Type Defaul
t

Description

Path 1 path empty
path

The first sub-path. A single Pose will also be accepted because pose is
convertible into path. See Type conversion .

...

Path 20 path empty
path

The last sub-path. A single Pose will also be accepted because pose is
convertible into path. See Type conversion .

Outputs

Path path empty
path

The path composed from the sub-paths Path 1 + ... + Path 20

5.8.5.1 Dialog

5.8.6 Path decomposer

Cuts a subpath out of a path. A path consists of a list of poses.

Index Pose

1 p1

2 p2

...

20

20

Function block library

© Festo Didactic GmbH & Co. KG 105

N pN

The inputs Start and Length specify the initial pose and the length of the decomposed path. Start must be
in [1;N]. If Start < 1, value 1 is used internally. If Start > the length of the path, the result will be an empty
path. Length must be in [0;N-Start+1]. If Length <= 0 the result will be an empty path. If Length > N-Start+1,
the result will be the subpath starting at index Start.

Examples:

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10

Start = 3

Length = 5

Subpath = p3, p4, p5, p6, p7

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10

Start = 0

Length = 1

Subpath = p1

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10

Start = 11

Length = 1

Subpath = empty path

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10

Start = 1

Length = 0

Subpath = empty path

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10

Start = 2

Length = 20

Subpath = p2, p3, p4, p5, p6, p7, p8, p9, p10

Inputs Type Defaul
t

Description

Path path empty
path

The path to decompose.

Start int 1 The pose at index Start of the path becomes the first pose of the
decomposed path.

© Festo Didactic GmbH & Co. KG

Function block library

106

Length int 1 The decomposed path consists of Length poses starting at the pose at index
Start of the path to decompose.

Outputs

Subpath path empty
path

The resulting path begins with the pose at index Start and consists of Length
poses.

5.8.7 Path driver

With the path driver it is possible to drive along paths.

From the path and the actual pose the velocity and the angular velocity are calculated so that Robotino
drives straightforward along the path's single poses.

Inputs Type Unit Defau
lt

Description

Path path empty
path

The path to drive.

Actual pose pose (0, 0,
0)

The actual pose determined by odometry or SLAM.

Restart bool false Restart the movement.

Outputs

Velocity float mm/
s

Forward velocity.

Angular
velocity

float deg/
s

Angular velocity.

Position
reached

bool True, if the path is empty.

Otherwise true, when the virtual point is located on the last path
segment and v(d) = 0.

Next way
point

pose The next target way point.

Function block library

© Festo Didactic GmbH & Co. KG 107

5.8.7.1 Configuration dialog 1

Top left

Correlation between angular velocity and angular error dφ.

Top right

Correlation between forward velocity and angular error dφ.

Bottom left

Correlation between forward velocity and distance to the next way point.

Bottom right

Correlation between forward velocity and angle to the next path segment.

© Festo Didactic GmbH & Co. KG

Function block library

108

5.8.7.2 Configuration dialog 2

Top left

Correlation between the robot's distance to the virtual way point and the angle to the next path segment.

Top right

Correlation between the robot's distance to the virtual way point and the distance to the next way point.

Bottom

Correlation between forward velocity and distance to the end of the path.

Function block library

© Festo Didactic GmbH & Co. KG 109

5.8.7.3 Configuration dialog 3

Top

Adaption of the coupling factor between the velocity calculated due to the configuration in dialogs 1 and
2 and the real velocity.

Unten

Adaption of the coupling factor between the angular velocity calculated due to the configuration in
dialogs 1 and 2 and the real angular velocity.

© Festo Didactic GmbH & Co. KG

Function block library

110

5.8.7.4 Path view

Function block library

© Festo Didactic GmbH & Co. KG 111

© Festo Didactic GmbH & Co. KG

Function block library

112

5.8.7.5 Strategy

The path driver function block creates a path which first connects the way points straight-lined.

The robot is driven with a virtual way point (painted as a red dot in the figure above). Given the robot's
current position, the virtual way point will be placed on the path that the distance between robot and
virtual way point is dp (distance virtual point). The virtual way point can only move along the path towards
the path's end, i.e. if the robot moves away from the virtual way point, it remains unchanged. Due to the
regulation on the virtual point, the path will be smoothed. The greater dp is, the greater is the smoothing.

Angular velocity parameterization

The angular velocity (dφ) is specified via the function block dialog dependent from the angular error dφ.
dφ is the angle between the robot's current orientation and the line from the robots center to the virtual
way point.

Velocity parameterization

The velocity is also specified dependent from dφ and named v(dφ). So it is possible to slow down the
movement if the robot is no longer oriented properly.

To be able to reduce velocity if the path has a bend, the velocity is also specified as a function v(dn) of the
distance between the virtual point and the next way point. A typical curve of v(dn) is

I.e. the velocity shall decline if the robot gets closer to the way point.

Function block library

© Festo Didactic GmbH & Co. KG 113

But we want to slow down the robot depending on the angle αn. αn is the angle between the current and

the next path segment. If αn = 180° (i.e. the path leads straight-forward through the way point) the

velocity is not to be reduced. If αn approaches 0° (a very strong bend) the robot must be slowed down

strongly. Therefore the function v(αn) is needed. A typical curve of v(αn) looks like this

I.e. the smaller αn is the smaller is the velocity.

These three velocity profiles v(dφ), v(dn) und v(α) are used to calculate the overall velocity V(dφ,dn,α):

 Vp(dφ,dn,α) = min(v(dφ), max(v(dn), v(α)))

Driving to the last way point

To slow down when the end of the path is reached, the velocity depending on the remaining distance to
be driven is specified and called v(d). The target is supposed to be reached when the velocity as a
function of the remaining distance to be driven is zero.

The unsmoothed velocity results in:

V(d,dφ,dn,γ) = min(v(d), Vp(dφ,dn,γ))

Smoothing of velocity and angular velocity

There are two other parameters available to smooth the movement.

The velocity coupling is the time in milliseconds that is needed for the coupling vCC between the
calculated velocity Vp(dφ,dn,α) and the real velocity to reach the value 1.

The angular velocity coupling is the time in milliseconds that is needed for the Coupling omegaCC
between the calculated angular velocity (dφ) and the real velocity omega to reach the value 1.

dv = vCC * (Vpt - Vpt-1)

velocity = Vpt-1 + dv

domega = omegaCC * ((dφ)t - (dφ)t-1)

velocity = (dφ)t-1 + domega

The subscript t means the value at time t. t-1 means the value one time step before t.

© Festo Didactic GmbH & Co. KG

Function block library

114

At restart vCC is initialized with 0 and increases to 1 within the time specified by the velocity coupling.

At restart omegaCC is initialized with 0 and increases to 1 within the time specified by the angular velocity
coupling.

If the virtual point jumps to a new path segment, vCC and omegaCC will be reset to 0.

5.8.7.6 Example

5.8.8 Obstacle avoidance

The module Obstacle avoidance calculates a detour for a path round a circular obstacle.

Inputs Type Unit Defau
lt

Description

Path path empty
path

The path to be driven.

Function block library

© Festo Didactic GmbH & Co. KG 115

Obstacle
pose

pose (0, 0,
0)

The position of the circular obstacle.

Obstacle
radius

float mm 100 The radius of the circular obstacle.

Angular
distance

float Grad 10 The maximum angular distance between two points of the detour round
the obstacle.

Outputs

Detour path empty
path

Detour round the obstacle.

5.8.8.1 Dialog

The dialog shows the original path, the obstacle and the detour.

© Festo Didactic GmbH & Co. KG

Function block library

116

5.9 Input Devices

This category supplies the function blocks for realizing the interaction with the user.

5.9.1 Control Panel

A control panel usable with the mouse.

Outputs Type Description

vx float Velocity in x-direction

vy float Velocity in y-direction

omega float Angular velocity.

5.9.1.1 Dialog

The control panel can be used as follows:

By clicking one of the buttons the robot system is moved into the arrow's direction.

By clicking one of the two circular arrows a rotation into the corresponding direction is performed.

By clicking the button in the middle the movement is stopped.

The movement's velocity is adjusted via the slider.

Function block library

© Festo Didactic GmbH & Co. KG 117

5.9.1.2 Example

5.9.2 Slider

The slider creates any integer value within a specified range.

© Festo Didactic GmbH & Co. KG

Function block library

118

5.9.2.1 Dialog

In the dialog the slider's range and orientation (1 = horizontal, 0 = vertical) can be adjusted.

5.10 Data exchange

This category contains function blocks for data exchange within Robotino® View or with external
applications.

5.10.1 Image Reader

The image reader reads single JPEG images from a picture sequence from the file system. Path and prefix
can be specified in the dialog .

Inputs Type Defaul
t

Description

Number int16 -1 Number of the desired image.

If Number = -1, the image number is automatically increased by 1 in every
step, starting with 0.

Outputs

Output imag
e

JPEG image from file "<Path>/<Prefix><Number>.jpg" or "<Path>/
<Prefix>_<Number>.jpg".

If the file does not exist, the number will be prepended leading zeros up to a
total length of 4 until the image file is found.

119

Function block library

© Festo Didactic GmbH & Co. KG 119

5.10.1.1 Dialog

In the dialog it is possible to specify the path and prefix of the picture sequence that is to be read.

© Festo Didactic GmbH & Co. KG

Function block library

120

5.10.1.2 Example

5.10.2 Image Writer

The image writer writes a sequence of JPEG images to the file system. Path and prefix can be specified in
the dialog . The image's number is increased by 1 in every step, starting with 0.

Every single image is saved under "<Path>/<Prefix>_<Number>.jpg". The number has at least 4 digits,
including leading zeros.

Inputs Type Defaul
t

Description

Input imag
e

Next image of the sequence.

Enable bool true The image writer is active.

121

Function block library

© Festo Didactic GmbH & Co. KG 121

5.10.2.1 Dialog

5.10.2.2 Example

See example image reader .

5.11 Variables

Global variables are a kind of special. For all global variables there are function blocks for reading and
writing available in every sub-program. These function blocks do always show the variable's name and
can't be renamed.

Global variables can be added, removed and renamed in the variable manager (main program view) .
Furthermore, they can be assigned initial values.

Adding, removing and renaming global variables is also possible in the function block library by right-
clicking on the device "Variables" and selecting "Add" or right-clicking on the variable's reader or writer
and selecting "Remove" or "Rename".

6 Devices

Devices establish the connection between Robotino View and the outside world. The device "Robotino"
can communicate with real Robotino or a simulated one. The device "Joystick" can read the positions of
the axes of a joystick attached to the computer.

6.1 Add and edit

When creating a new project the device "Robotino" is automatically added. To add more devices you
have to change the current view to a subprogram.

120

15

© Festo Didactic GmbH & Co. KG

Devices

122

Below the function block library devices can be added using the "Add" button. The device chosen will
appear underneath the device "Robotino" in the function block library.

New devices get a unique name. This name can be changed using the "Rename" button, if the device has
been selected in the function block library.

The "Remove" button is used to remove devices from the current project. This function is available only if
no function blocks of the devices are used within the project.

6.2 Show dialogs

Every device has a configuration dialog. This dialog is opened by double clicking the device in the function
block library

Devices

© Festo Didactic GmbH & Co. KG 123

6.3 Robotino

The Robotino Device provides access to sensors and actors of the Robotino® robot system.

6.3.1 Toolbar

You can find the IP address input field and connect button within the main tool bar . The IP address
input and connect button refer to the first Robotino device in the list of devices in the device manager. The
function of the IP address input field and the connect button is identical to the one in the device dialog.

11

© Festo Didactic GmbH & Co. KG

Devices

124

6.3.2 Dialog

The dialog of the Robotino device will be shown after double-clicking on the Robotino device.

1 IP address input Robotino's default IP address is 172.26.1.1. If you want to connect to
Robotino Sim (running on the same computer as Robotino View) the IP
address is 127.0.0.1:8080. 8080 is the port number, at which the Robotino
server listens to incoming connections. If more than one Robotino is
simulated, the port number can be higher.

2 Connect button By clicking on this button a connection to Robotino will be established or
closed.

3 Resolution The requested resolution of images taken by Robotino's camera.

4 Frequency Frequency of image updates

5 Disable drive system If checked, Robotino's motors are deactivated

6 Message window Display of various message in text form.

6.3.3 Function blocks

The function blocks allow the usage of the Robotino device in a subprogram.

6.3.3.1 Drive system

This folder contains function blocks to control Robotino's drive system.

Devices

© Festo Didactic GmbH & Co. KG 125

6.3.3.1.1 Motor

Access to one Robotino's motors. The motor number is displayed.

.

Inputs Type Unit Defau
lt

Description

Speed set-
point

float rpm 0 The speed set-point of the motor control in rounds per minute. Please
note that there is a 16:1 gear between motor and Robotino's wheel.

Reset
position

bool false If true the tick counter of the motor's encoder is reset to 0.

Brake bool false If true the motor is stopped.

Acceleratio
n

int 100 Coupling of speed set-point at the input and the speed set-point really
transmitted (see Dialog)

Outputs

Actual
velocity

float rpm The actual velocity of the motor.

Actual
position

int The number of ticks counted since power up of Robotino or since "Reset
position" had been true and the false. The ticks are generated by the
motor's encoder which generates 2000 ticks per round.

Current float A The current measured at the motor's H-bridge.

126

© Festo Didactic GmbH & Co. KG

Devices

126

6.3.3.1.1 Dialog

Parameter Description

Devices

© Festo Didactic GmbH & Co. KG 127

Acceleration Acceleration/Deceleration factor. With the maximum value 100 speed set-
points are given directly to the motor's controller. With smaller values
differences between speed set-points are flattened over time. This can be used
to generate smooth motions of Robotino.

kp Proportional term of the motor's PID controller

ki Integral term of the motor's PID controller

kd Differential term of the motor's PID controller

Use default parameters Use the values for kp, ki and kd implemented in Robotinos firmware. These
default values are also used if you set kp=ki=kd=255.

Reset on start Initialize the Actual position with 0 at program start

Velocity control of each motor is performed by a PID controller

The parameters are:

Kp

Ki = 1/Tn

Kd

From the values set in the dialog the controller parameters are calculated as:

Kp= kp / 2

Ki= ki / 1024

Kd= kd / 2

Default values are

kp = 25

ki = 25

kd = 25

© Festo Didactic GmbH & Co. KG

Devices

128

6.3.3.1.2 Omnidrive

Calculates the speed set-points of motor 1, 2 and 3 according to set-velocities vx, vy and omega.

Inputs Type Unit Defau
lt

Description

vx float mm/s 0 Set-velocity in x-direction in Robotino's local coordinate system.

vy
zurücksetz
en

float mm/s 0 Set-velocity in y-direction in Robotino's local coordinate system.

omega float deg/s 0 Set-rotational velocity.

Outputs

m1 float rpm Speed set-point motor 1

m2 float rpm Speed set-point motor 2

m3 float rpm Speed set-point motor 2

The function block "Omnidrive (inverse)" calculates vx, vy and omega from the motors' rotation speeds.

Devices

© Festo Didactic GmbH & Co. KG 129

The image shows Robotino's local coordinate system. A positive rotational velocity omega generates a
counter-clockwise rotation when looking from top onto Robotino.

6.3.3.2 Collision detection

Here you can find function blocks referring to sensors for detecting obstacles.

6.3.3.2.1 Bumper

A tactile sensor is integrated into the bumper. If contacted, the sensor supplies an output signal.

Inputs Type Defaul
t

Description

Outputs

Value bool True if there is a contact.

© Festo Didactic GmbH & Co. KG

Devices

130

6.3.3.2.2 Distance sensors

The sensor reading of a distance sensor.

Inputs Type Unit Defau
lt

Description

Outputs

Value float Volt Analog reading of the distance sensor in V. The scaling and conversion
of a distance value must be effected by the user.

Heading float Degre
e

The heading of the sensor in Robotino's local coordinate system (see
image below). The heading is calculated from the sensor number as

Heading = 40° x (Number - 1)

Devices

© Festo Didactic GmbH & Co. KG 131

6.3.3.2.2 Example

The data sheet of the distance sensor (its a Sharp GP2D120) shows the mapping between distance to an
object in cm and the sensor's analog output signal in Volt.

© Festo Didactic GmbH & Co. KG

Devices

132

With this mapping it is easy to configure a transfer function so that the analog voltage is mapped to
distance to object in cm. Please notice that this mapping is the inverse of the mapping shown above. This
means that we have to skip distances smaller 4cm. Distance smaller 4cm can not be distinguished from
distances larger 4cm, because the analog voltage output of the sensor is the same.

Furthermore the analog digital converter measures voltages up to 2,55V only.

The mapping from analog voltage to distance is also influenced by the material of the detected object.
Overall it is best practice to measure the mapping by yourself.

61

Devices

© Festo Didactic GmbH & Co. KG 133

The values of the transfer function are given below. You can Copy&Paste these values into your own
transfer function .

0.3 40

0.39 35

0.41 30

0.5 25

0.75 18

0.8 16

0.95 14

1.05 12

1.3 10

1.4 9

1.55 8

1.8 7

2 6

2.35 5

2.55 4

6.3.3.3 Image system

This folder contains function blocks to use Robotino's camera.

61

61

© Festo Didactic GmbH & Co. KG

Devices

134

6.3.3.3.1 Camera

The live image of Robotino's camera.

Inputs Type Defaul
t

Description

Outputs

Image imag
e

The image from Robotino' camera

To set the image resolution you can use Robotino's device dialog .

6.3.3.3.1 Dialog

Shows the latest image. To adjust the image resolution see device dialog .

124

124

Devices

© Festo Didactic GmbH & Co. KG 135

6.3.3.4 I/O connector

Here you can find function blocks to access Robotino's I/O connector.

6.3.3.4.1 Relay

Switch relay 1 and 2.

Inputs Type Defaul
t

Description

© Festo Didactic GmbH & Co. KG

Devices

136

Value bool false If false the relay is switched off.

The connectors for relay 1 are REL1_NO, REL1_CO and REL1_NC.

The connectors for relay 2 are REL2_NO, REL2_CO and REL2_NC.

Devices

© Festo Didactic GmbH & Co. KG 137

6.3.3.4.2 Digital output

Set a digital output.

Inputs Type Defaul
t

Description

Value bool false If true the output at Robotino's I/O connector is +10V. Otherwise the output is
0V.

The connector for digital output x is DOx with x in [1;8].

© Festo Didactic GmbH & Co. KG

Devices

138

6.3.3.4.3 Analog input

Reads the value of an analog input.

Outputs Type Unit Description

Value float Volt The measured voltage. Range [0;10].

Devices

© Festo Didactic GmbH & Co. KG 139

The connector for analog input x is AINx with x in [1;8].

6.3.3.4.4 Digital input

Reads the value of a digital input.

© Festo Didactic GmbH & Co. KG

Devices

140

Outputs Type Description

Value bool The value at Robotino's I/O connector. Voltages less 5.75V are mapped to false.
Values greater 8.6V are mapped to true. If the voltage at the connector is between
5.75V and 8.6V the value remains unchanged.

The connector for digital input x is DIx with x in[1;8].

6.3.3.5 Navigation

This folder contains function blocks for the location of Robotino.

Devices

© Festo Didactic GmbH & Co. KG 141

6.3.3.5.1 Odometry

For this functionality a 1GB Compact-Flash memory card for Robotino (V 1.7 or higher) is
needed.

(No functionality with 256MB memory cards, Version <=1.6)

Odometry is the use of data from the movement of actuators to estimate change in position over time.
See http://en.wikipedia.org/wiki/Odometry.

The rotation of wheels is measured with the highest time resolution possible. In every time step the
distance driven by the vehicle is calculated from the wheels rotational speed. These very small distances
from the single time steps are integrated over time. This leads to the actual position relative to the
starting position. This method yields good local performance. On long distances or under adverse
conditions (wheels slip because of dust on the floor, drift because of preferential direction of the carpet)
this method leads to very large errors. On this account odometry is always combine with other methods to
compensate for the described errors.

Inputs Type Unit Defau
lt

Description

x float mm 0 The new x-position. Odometry is reset to the new position if "Set" is
true.

y float mm 0 The new y-position. Odometry is reset to the new position if "Set" is
true.

phi float Degre
e

0 The new orientation. Odometry is reset to the new position if "Set" is
true.

Set bool false If true, the odometry is set to the values from inputs x, y, and phi. To
reset the odometry to (0,0,0) you only need to set this input true for one
time step. The other inputs do not need to be connected, because the
default values are 0.

Outputs

x float mm The current x-position from the odometry in global coordinates.

y float mm The current y-position from the odometry in global coordinates.

phi float Degre
e

The current orientation from the odometry in global coordinates.

http://en.wikipedia.org/wiki/Odometry

© Festo Didactic GmbH & Co. KG

Devices

142

6.3.3.5.2 North Star

North Star ® is a sensor which determines Robotino®'s absolute position with the help of projectors.

Inputs Type Unit Defau
lt

Description

Room
number

int 1 The room number in which Robotino is currently located.

Rooms are enumerated starting with 1.

Ceiling
calibration

float mm 1 Distance between detector and ceiling. If the ceiling height is 3m the
distance between detector and ceiling is about 2800mm.

x float mm 0 x-position of the origin set by the input "Set".

y float mm 0 y-position of the origin set by the input "Set".

phi float Degre
e

0 Orientation of the origin set by the input "Set".

Set bool false If true, the current pose (x,y,phi) is used as origin.

Outputs

x float mm The current x-position in global coordinates.

y float mm The current y-position in global coordinates.

phi float Degre
e

The current orientation in global coordinates.

Projektoren int Number of visible projectors.

Devices

© Festo Didactic GmbH & Co. KG 143

The Northstar detector can be attached to Robotino in different ways. Depending on the configuration the
file /etc/robotino/robotino.xml on robotino must be adapted with a text editor. The value for the
orientation must be set according to the figure below.

<NorthStar>

 <!--The orientation of the northstar sensor. See www.openrobotino.org-->

<Orientation value="1" />

</NorthStar>

© Festo Didactic GmbH & Co. KG

Devices

144

Devices

© Festo Didactic GmbH & Co. KG 145

6.3.3.5.2 Dialog

Spot A Intensity of the first light spot emitted by the projector.

Spot B Intensity of the second light spot emitted by the projector.

Current room The room number detected by the North Star sensor.

Number of projectors The number of visible projectors.

Sequence number The sequence number is incremented by one each time the North Star sensor
provides new readings.

© Festo Didactic GmbH & Co. KG

Devices

146

6.3.3.5.2 Example

The control panel is used to move Robotino.

Northstar shall detect the projector that belongs to room 4. The new NorthStar projector must be set to
room 1.

Devices

© Festo Didactic GmbH & Co. KG 147

Via the boolean constant (true/false) the coordinate systems of Northstar and the odometry can be
transformed so that "current Northstar pose" == "current odometry pose" == (100,100,90).

By subtracting the components of Northstar and odometry, you can see the error occurring between
odometry and Northstar.

6.3.3.6 I/O extension

This folder contains function blocks to Robotino's other hardware interfaces.

6.3.3.6.1 Encoder input

This function block reads values from Robotino's encoder input.
The encoder input interprets signals from a digital motor encoder (A,B-channel gray-code).
Rising and falling edges are considered. This leads to a quad effective resolution.

Example: The motor encoder of Robotino' s drive motors has a resolution of 500 ticks.
Effectively 2000 ticks are counted.

© Festo Didactic GmbH & Co. KG

Devices

148

Inputs Type Unit Defau
lt

Description

Reset
position

bool 0 If true the actual position is reset to 0.

Outputs

Actual
velocity

int ticks/
s

The measured velocity.

Actual
position

int ticks The sum of all ticks measured since the start of robotino or since "Reset
position" = true.

6.3.3.6.2 Power output

This function block assigns set point values to Robotino's power output (former Motor 4). The power
output can only be used if the sub-program doesn't use the gripper.

The output is instantiated by a H-bridge, which can deliver up to 5A continuous current.
The H-bridge is driven by a high frequency PWM signal and one bit for direction.
The sign of the set point given by the input corresponds to the direction bit.
The absolute value of the set point influences the PWM signal.
A set point of 0 does not generate any PWM signal, i.e. no current is delivered by the H-bridge.
A set point of 50 leads to a high-low-ratio of the PWM signal of 50%.
A set point of 100 generates a constant high, i.e. the H-Bridge delivers maximum current.

Inputs Type Unit Defau
lt

Description

Set-point int 0 Sets direction bit and PWM signal. Range -100 to 100. Values less -100
are interpreted as -100. Values greater 100 are interpreted as 100.

Outputs

Current float A Der durch die H-Brücke fließende Strom.

The current delivered by the power output is limited by default.
To change or disable this limitation edit /etc/robotino/robotino.xml on Robotino.
The new values are assigned after 2 seconds.

Devices

© Festo Didactic GmbH & Co. KG 149

6.3.3.6.3 Gripper

Use this module with a Festo Robotino Gripper. The Gripper can only be used if the current sub-program
does not contain a power output .

Inputs Type Defaul
t

Description

Open bool false If true the gripper is opened.

Outputs

Opened bool True if the gripper reached its opened position

Closed bool True if the gripper reached its closed position.

The Gripper must be connected to port X15 at the PCB behind the battery:

brown cable (+) to the left, blue cable (-) to the right.

6.3.3.7 Internal sensors

6.3.3.7.1 Power management

The power management module of Robotino.

Inputs Type Unit Defau
lt

Description

Outputs

Power
consumptio
n

float A The current drawn from Robotino's batteries.

Battery float Volt Battery voltage.

148

© Festo Didactic GmbH & Co. KG

Devices

150

6.3.3.7.2 Shutdown

Shut down and switch off Robotino.

Inputs Type Defaul
t

Description

Shutdown bool false If true, Robotino shuts down and is turned off.

6.4 Joystick

The device "Joystick" allows access to a locally attached joystick.

6.4.1 Dialog

1 List of available joysticks The combo box contains an entry for every joystick available at this
computer. This list is updated whenever a new joystick is attached are
detached from this computer. By selecting a joystick its buttons and axes
become available through the corresponding function blocks.

2 Number of axes The number of axes of the selected joystick.

3 Number of buttons The number of button of the selected joystick.

6.4.2 Function blocks

Function blocks to read button and axis states.

Devices

© Festo Didactic GmbH & Co. KG 151

6.4.2.1 Button

Reads the state of a joystick's button.

Outputs Type Description

Value bool True if the button is pressed, false otherwise.

6.4.2.2 Axis

Read the position of a joystick's axis.

Outputs Type Description

Value int Range -1000 to 1000.

6.5 Local camera

The device "Local camera" allows access to a camera that is attached to the computer (e.g. a webcam).

© Festo Didactic GmbH & Co. KG

Devices

152

6.5.1 Dialog

1 List of available cameras All cameras attached to the system are shown here. The list is updated
when a new camera is attached to or removed from the computer.

2 Scan Update the list of available cameras.

3 Connect/Disconnect Establish/Close a connection to the selected camera.

4 Resolution/Color depth Coose the resolution and color depth here. All resolutions supported by the
camera are available.

5 Message window Display of various message in text form.

After selecting a camera a connection must be established. Than it is possible to set the resolution.

Devices

© Festo Didactic GmbH & Co. KG 153

6.5.2 Function blocks

The function blocks allow to use the device "Local camera" in a sub-program.

6.5.2.1 Camera

Live image of the local camera.

Inputs Type Defaul
t

Description

Outputs

Image imag
e

Live image

Color depth and resolution can be selected in the device dialog .

6.5.2.1.1 Dialog

The camera dialog shows the current image. To adjust the image resolution see device dialog .

152

152

© Festo Didactic GmbH & Co. KG

Devices

154

6.6 OPC Client

OPC is a standardised interface between different software applications and drivers of different hardware
modules (e.g. PLC).

Multiple OPC-Clients can connect to one OPC-Server.
A (special) OPC-Server will often be provided by the common PLC manufacturers.

In the below sample a Festo EasyPort will be connected to RobotinoView via the free Festo EzOPC-Server.

The EzOPC-Server allocates the in-/outputs of up to 4 EasyPorts using so called "Groups" and "Tags":

Device1 shows as group "EasyPort1"

Output 1 therefore shows as Tag "EasyPort1.OutputPort1"

Please follow these steps:

1. Install the EzOPC-Server.
2. Start the EzOPC Server and choose "Process Simulation…" and "PLC via EasyPort".
3. Start RobotinoView.
4. Add the "OPC Client" device.

5. From the device dialog's context menu select Predefined settings "Festo EzOPC EasyPort". The
default values for the EasyPort will be loaded.

6. If needed select "FestoDidactic.EzOPC.1".
7. Start the connection.

8. Use the OPC Client function blocks to access the OPC-data of the EasyPort's in-/outputs.

Hint: if you would like to use a PLC of a different manufacturer you need a OPC server or OPC client of this
manufacturer. Use an OPC client to see which tags are available on your PC's OPC server.

Downloads and additional information can be found at http://www.opcconnect.com/

http://www.opcconnect.com/

Devices

© Festo Didactic GmbH & Co. KG 155

6.6.1 Dialog

1 Select OPC server The combocox lists all available local OPC servers.

2 Connect Establish a connection to the selected OPC server.

3 Scan Update the list a OPC servers.

4 Mapping This table defines the mapping from function blocks to OPC "Tags".

Row function block

DO_Port_1 digital Output 1

DO_Port_2 digital Output 2

DO_Port_3 digital Output 3

© Festo Didactic GmbH & Co. KG

Devices

156

DO_Port_4 digital Output 4

DI_Port_1 digital Input 1

DI_Port_2 digital Input 2

DI_Port_3 digital Input 3

DI_Port_4 digital Input 4

AO_Port_1 analog Output 1

AO_Port_2 analog Output 2

AO_Port_3 analog Output 3

AO_Port_4 analog Output 4

AI_Port_1 analog Input 1

AI_Port_2 analog Input 2

AI_Port_3 analog Input 3

AI_Port_4 analog Input 4

The context menu provides the following functionality:

Predefined settings
Festo EzOPC VirtualPLC

Load a mapping suitable for VirtualPLC

Predefined settings
Festo EzOPC EasyPort

Load a mapping suitable for EasyPort

Load Load a mapping from file.

Save Save the current mapping to a file.

Help Show this help page.

6.6.2 Function blocks

Function blocks allow use of the "OPC Client" device in a sub-program.

6.6.2.1 Inputs

Devices

© Festo Didactic GmbH & Co. KG 157

6.6.2.1.1 Analog input

Reading of the "Tag" mapped to AI_Port_x with x in [1;4]

Outputs Type Description

Value int Range 0 to 65535

6.6.2.1.2 Digital input

Read bit values of the "Tag" mapped to DI_Port_x with x in [1;4]

Outputs Type Description

Bit 0 bool True if bit 0 is set.

...

Bit 7 bool True if bit 7 is set.

6.6.2.2 Outputs

6.6.2.2.1 Analog output

© Festo Didactic GmbH & Co. KG

Devices

158

Write Value to the "Tag" mapped to AO_Port_x with x in [1;4]

Inputs Type Description

Value int Range 0 to 65535

6.6.2.2.2 Digital output

Set bits of "Tag" mapped to DO_Port_x with x in [1;4]

Inputs Type Description

Bit 0 bool If true the value send to the OPC server is increased by 2^0 = 1.

...

Bit 7 bool If true the value send to the OPC server is increased by 2^7 = 128.

6.7 Data exchange

Devices from this category are used to exchange data between different Robotino View instances over a
network.

6.7.1 Server

The data exchange server can be used by an arbitrary number of clients to exchange data over an
arbitrary number of communication channels. The communication channels are create at server side. The
communication channels created are broadcasted to all clients. The clients can choose over which
channels they are going to exchange data with the server.

Server and clients are have equal rights when exchanging data. When a client writes data into a
communication channel the data is transfer to the server and from there to all other clients. If more than
one participant is writing to the same channel it is unpredictable which datum the communication channel
contains in the end.

After adding the data exchange server device to the function block library the communication channels
can be added via the servers context menu.

Devices

© Festo Didactic GmbH & Co. KG 159

A dialog is displayed to enter the name and the type of the new channel.

The channel's name must be unique and must contain ASCII characters excluding the "/" character only.
By pressing Ok the channel is created. In the function block library two new function blocks appear named
"channel name Writer" and "channel name Reader". These function blocks are used to write to or read
from a communication channel.

© Festo Didactic GmbH & Co. KG

Devices

160

Devices

© Festo Didactic GmbH & Co. KG 161

6.7.1.1 Dialog

The data exchange server's dialog is opened by double clicking onto the device symbol in the function
block library.

Server port is the TCP port the server is listening for incoming connections.

Sending interval is the time intervall after a transmission that must elapse before the next transmission is
permitted.

By "Start server" the server starts listening. From now on clients can connect to the server.

6.7.2 Client

The data exchange client connects to a data exchange server . Afterwards data can be exchange with
the server using the server's communication channels.

After the client successfully connected to the data exchange server the list of communication
channels is available.

158

158

© Festo Didactic GmbH & Co. KG

Devices

162

At server side the communication channels a,b of type I32 (integer with 32 bit) and c,d of type FLOAT32
(floating point with 32 bit) had been created. These channels can now be added to the client in the
function block library.

Devices

© Festo Didactic GmbH & Co. KG 163

As with the data exchange server the function block library shows two function blocks after adding a
channel to the client. Via the client's context menu channels can be added one by one or all at once.
Using the "Connect" entry from the context menu the connection to the server can be established without
using the clients's dialog.

158

© Festo Didactic GmbH & Co. KG

Devices

164

6.7.2.1 Dialog

Server address is the IP address of the server the client wants to connect to. If only the IP address is given
the connection is established using the server's default port 9080. If the server is listening on a different
port the port number can be specified after the IP address separated by a ":".

If the server is listening on the local host at port 8000, the clients server address should be
127.0.0.1:8000.

If "Auto reconnect" is active the clients tries to establish a new connection after the current connection
goes down.

Sending interval is the time intervall after a transmission that must elapse before the next transmission is
permitted.

Devices

© Festo Didactic GmbH & Co. KG 165

6.7.3 Function blocks

The function blocks are used to exchange data with the devices.

6.7.3.1 Reader

The Reader reads data from a communication channel.

Outputs Type Description

Value int, float, float
array, laser range
data

The value of the communication channel.

6.7.3.2 Writer

The Writer writes data into a communication channel.

Inputs Type Default Description

Value int, float, float array,
laser range data

0 The value is send to the server and the broadcasted to all
clients.

6.8 UDP data exchange

With the UDP data exchange device data can be exchanged between Robotino View and external
applications via UDP.

6.8.1 Protocol

Specification of the data structure

Byte Function

0 Message ID

© Festo Didactic GmbH & Co. KG

Devices

166

1-2 Number of Bytes of the whole message N. Type is UINT16

3 Checksum (to be initialized with 0 when the package is generated, see Checksum)

N-1 Message's last byte

6.8.1.1 Checksum

If the message is shorter than 100 byte, the sum s0 will be calculated from the whole package's single
bytes. If the message contains 100 bytes or more, s0 will be calculated from the message's first and the
last 50 bytes.

In both cases the checksum byte must be initialized with 0. The checksum is calculated to

checksum = 0xff - s0

unsigned char checksum(const unsigned char* payload, unsigned int payloadLength) const

{

unsigned char s0 = 0;

if(payloadLength < 100)

{

for(int i = 0; i < payloadLength; ++i)

{

s0 += payload[i];

}

}

else

{

for(int i = 0; i < 50; ++i)

{

s0 += payload[i];

}

for(int i = payloadLength-1; i >= payloadLength - 50; --i)

{

s0 += payload[i];

}

}

return (0xFF - s0);

}

To check if the package has been transmitted correctly, the whole message's single bytes will be
accumulated to the byte sum s1 if the message is shorter than 100 byte. If it contains 100 bytes or more,
s1 is calculated from the message's first and last 50 bytes.

The package is correct if

s1 = 0xFF

167

166

Devices

© Festo Didactic GmbH & Co. KG 167

6.8.1.2 Data types

Typ
e

Width
in bytes

Description

UIN
T16

2 Byte0: low

Byte1: high

On a little endian system a UINT16 data value can be copied directly into the payload.

Example:

//encoding

uint16 value = 9873;

char payload[2];

uint16* p = reinterpret_cast<uint16*>(payload);

*p = value;

//decoding

value = *(reinterpret_cast<const uint16*>(payload));

INT
32

4 Byte0: low

Byte3: high

On a little endian system a INT32 data value can be copied directly into the payload.

Example:

//encoding

int32 value = -3459873;

char payload[4];

int32* p = reinterpret_cast<int32*>(payload);

*p = value;

//decoding

value = *(reinterpret_cast<const int32*>(payload));

UIN
T32

4 Byte0: low

Byte3: high

On a little endian system a UINT32 data value can be copied directly into the payload.

Example:

//encoding

uint32 value = 3459873;

char payload[4];

uint32* p = reinterpret_cast<uint32*>(payload);

*p = value;

//decoding

value = *(reinterpret_cast<const uint32*>(payload));

6.8.1.3 Message 0

Byte Function

0 0

1 36

2 0

© Festo Didactic GmbH & Co. KG

Devices

168

3 Checksum

4-7 INT0 of type INT32

8-11 INT1 of type INT32

12-15 INT2 of type INT32

16-19 INT3 of type INT32

20-23 INT4 of type INT32

24-27 INT5 of type INT32

28-31 INT6 of type INT32

32-35 INT7 of type INT32

6.8.1.4 Message 1

Byte Function

0 1

1 36

2 0

3 Checksum

4-7 INT0 of type INT32

8-11 INT1 of type INT32

12-15 INT2 of type INT32

16-19 INT3 of type INT32

20-23 INT4 of type INT32

24-27 INT5 of type INT32

28-31 INT6 of type INT32

32-35 INT7 of type INT32

166

167

167

167

167

167

167

167

167

166

167

167

167

167

167

167

167

167

Devices

© Festo Didactic GmbH & Co. KG 169

6.8.2 Dialog

The dialog of the UDP data exchange device can be opened by double-clicking on the device entry in the
function block library.

In the dialog both sending and receiving UDP datagrams can be configured:

With "Server port" the UDP port number at which the server listens for datagrams and from which
datagrams are sent is configured.

With "Start server" the server is started. Once the server has been startet, UDP data packages are
received and interpreted and sent.

"Interval" is the time intervall after a transmission that must elapse before the next transmission is
permitted.

For each message (message 0 or message 1) sending can be turned on and off individually.

IP adresses and ports of data receivers can be entered into the "Listeners" table. If no port is specified,
port 9180 will be used by default.

© Festo Didactic GmbH & Co. KG

Devices

170

6.8.3 Function blocks

The function blocks are used to exchange data with the devices.

6.8.3.1 Message 0

The function blocks in category Message 0 allow sending and receiving data.

6.8.3.1.1 Input

The inputs of message 0 provide received values.

6.8.3.1.1 Reader

The reader reads data and outputs received data. There is a reader for each of INT0 to INT7.

Outputs Type Description

Value int The received value

6.8.3.1.2 Output

The outputs are used to send values.

6.8.3.1.2 Writer

Devices

© Festo Didactic GmbH & Co. KG 171

The writer takes the data to send and passes them to the device to send it to the receivers via UDP. There
is a writer for each of INT0 to INT7.

Inputs Type Description

Value int The value to send

6.8.3.2 Message 1

Message 1 is identical to Message 0 .

6.8.4 Example

7 Programming

To compile function blocks and devices the Robotino® View 2 API is necessary.

7.1 My function blocks

You can find the following examples in

%ProgramFiles%\Festo\RobotinoView2\units\robview\MyFunctionsBlocks

170

© Festo Didactic GmbH & Co. KG

Programming

172

or respectively

%ProgramFiles(x86)%\Festo\RobotinoView2\units\robview\MyFunctionsBlocks

on 64 bit systems. The environment variable %ProgramFiles% stores the path to the installed application.
Normally this is "C:\Program Files".

Before opening Visual Studio Solution tutorialx.sln you should run the script

RUN THIS FIRST THEN START VS.cmd

from the current tutorial folder. The script generates user specific settings, that can not be stored in the
sln file and enable debugging of function blocks.

For the debugging to work, Robotino View 2 must be specified as executable with the correct working
directory in the project settings as shown below. This settings will be set correctly automatically if you
have executed "RUN THIS FIRST THEN START VS.cmd" before as described above.

Programming

© Festo Didactic GmbH & Co. KG 173

7.1.1 Tutorial 1

Folder: tutorial1.unit

This tutorial explains how the build a function block with one input and one output connector. The relevant
code can be found in Tutorial1.cpp in the step() function.

The input value "in" is multipled by 2 and then written to the output. Do whatever you like here. To see
what happens in your code start the debugger by pressing the F5 key. The function block is compiled and
linked and Robotino View 2 is started. Please ignore the dialog that Robotino View 2 does not contain
debugging information. As you do not want to debug Robotino View 2, but only your function block, this
message is irrelevant.

Create a sub-program in Robotino View 2 containing the Tutorial 1 function block from My function blocks.
Start the simulation of the sub-program.

© Festo Didactic GmbH & Co. KG

Programming

174

Place a break point in your step() method.

Index

175© Festo Didactic GmbH & Co. KG

- A -
ABS 60

absolute value 60

add devices 121

addition 57, 71, 74

analog input 138

AND 41, 43, 45, 47, 48, 49, 50, 51, 52, 53

AND FL 43

arrays 67

- B -
bumper 129

- C -
C++ 173

camera 134, 151

cartesian 75, 76

changes 8

client 154, 158, 165

color space 91

compare 58, 59, 60

connect to Robotino 18

constant 93, 101

control panel 116

Cosine wave 92

counter 35, 38

create function block in C++ 173

- D -
data exchange 118, 154, 158, 165

devices 121, 123, 150

devision 73

digital input 139

digital output 137

display 77

distance 130

division 54

- E -
encoder input 147

equal 58, 59, 60

example 26, 34, 173

- F -
filter 96

firmware 25

FlipFlop 34, 52

function 60, 61, 64, 65, 66

function block 14, 34, 35, 38, 39, 40, 41, 43, 45,
47, 48, 49, 50, 51, 52, 53

function block connection 14

function blocks 124

- G -
generator 91, 92, 93, 94, 95

getting started 13

global variables 15, 121

greater 60

gripper 149

- I -
image information 89

image processing 79, 83, 85, 87, 89, 91

input 116, 117, 129, 130, 138, 139, 147, 149, 150

install 8

- J -
joystick 150

- K -
keyboard shortcuts 19

- L -
language 9

latching relay 34, 52

length 72

less 59

line detector 85

load program 14

- M -
math function 54, 55, 56, 57, 58, 59, 60, 61, 64,
65, 66, 67

maximum 65

mean filter 96

minimum 64, 65

Modulo 54

motor 125, 128

multiplexer 39, 40

multiplication 55, 74

© Festo Didactic GmbH & Co. KG176

Index

- N -
NAND 45

NAND FL 47

navigation 96, 101, 102, 103, 104, 106, 114, 140,
141, 142

new project 13

NOR 51

norm 72

North Star 142

NOT 41, 43, 45, 47, 48, 49, 50, 51, 52, 53

- O -
obstacle avoidance 114

odemetry 141

omnidrive 128

OPC 154, 158

operating sytem 25

OR 41, 43, 45, 47, 48, 49, 50, 51, 52, 53

oscilloscope 77

output 135, 137, 148, 149

- P -
path 104, 106, 114

path driver 106

polar 75, 76

pose 101, 102, 103

position 96

position driver 96

power management 149

power output 148, 149

- R -
random 95

reagion of interest 87

relay 135

robotino 123, 125, 128, 129, 130, 134, 135, 137,
138, 139, 147, 148, 149, 151

ROI 87

rotate 76

RS 52

RS-FlipFlop 34, 52

- S -
Sample and Hold 53

scalar 69, 74

scale function 66

scope 77

segment 83

segment extractor 83

segmenter 79

sensor 130, 134, 151

server 154, 158, 165

shortcuts 19

Sine wave 92

slider 117

Square wave 92

sub program 16

substraction 70, 73

subtraction 56

- T -
terminology 13

timer 94

transfer function 61

Triangle wave 92

tutorial 26, 34, 173

type conversion 20

- U -
UDP 165

uninstall 8

updates 8, 20, 25

upload project 20

- V -
variable 101

vector 69, 70, 71, 72, 73, 74, 75, 76

- W -
waveform generator 92

workspace 9

- X -
XOR 41, 43, 45, 47, 48, 49, 50, 51, 52, 53

	Welcome
	Improvements
	Installation, update and de-installation
	Changing language

	Familiarisation with the workspace
	Structure and concept of user interface
	Tool bar
	Function block library

	Terminology

	Using Robotino® View
	Create a new project
	Load an existing project
	Insert function blocks into sub-programs
	Interlink function blocks
	Global variables
	Execute a sub-program
	Execute the main program
	Connect to Robotino®
	Keyboard shortcuts
	Type conversion
	Updates
	Upload projects to Robotino and execute them
	Browse Robotino
	Upload and execute

	Upgrade Robotino packages
	Robotino firmware installation
	Interna

	Examples
	Control programs
	Tutorial 2

	Logic
	Multiplexer
	FlipFlop

	Function block library
	Logic
	Counter up
	Dialog
	Example

	Counter down
	Dialog

	Multiplexer
	Dialog
	Example

	Demultiplexer
	Dialog
	Example

	AND
	Dialog
	Example

	AND FL
	Dialog
	Example

	NAND
	Dialog
	Example

	NAND_FL
	Dialog

	OR
	Dialog
	Example

	XOR
	Example

	NOT
	Example

	NOR
	Dialog
	Example

	Latching relay
	Sample and hold element

	Mathematics
	Arithmetic operations
	Modulo
	Division
	Multiplication
	Dialog

	Subtraction
	Dialog

	Addition
	Dialog

	Comparison Operations
	Inequal
	Equal
	Less equal
	Less
	Greater equal
	Greater

	Functions
	Absolute Value
	Transfer Function
	Dialog
	Example

	Minimum
	Dialog

	Maximum
	Dialog

	Scale
	Dialog

	Arrays
	Float array composer
	Dialog

	Float array decomposer
	Float array index access

	Vector analysis
	Vector operations
	Dot product
	Subtraction
	Dialog

	Addition
	Dialog

	Norm
	Example

	Element operations
	Division
	Subtraction
	Addition
	Multiplication

	Transformations
	Vector to Polar
	Vector to Cartesian
	Polar to Vector
	Cartesian to Vector
	Rotate
	Example

	Display
	Oscilloscope
	Dialog

	Laser range finder data display
	Dialog

	Image processing
	Segmenter
	Dialog
	Example

	Segment Extractor
	Dialog
	Example

	Line Detector
	Dialog
	Example

	ROI
	Dialog
	Example

	Image Information
	Dialog
	Example

	Colorspace conversion
	Dialog

	Generators
	Arbitrary waveform generator
	Dialog
	Example

	Constant
	Timer
	Example

	Random generator

	Filter
	Mean filter
	Dialog

	Navigation
	Position Driver
	Dialog
	Example
	Movements

	Constant pose
	Pose composer
	Dialog

	Pose decomposer
	Dialog

	Path composer
	Dialog

	Path decomposer
	Path driver
	Configuration dialog 1
	Configuration dialog 2
	Configuration dialog 3
	Path view
	Strategy
	Example

	Obstacle avoidance
	Dialog

	Input Devices
	Control Panel
	Dialog
	Example

	Slider
	Dialog

	Data exchange
	Image Reader
	Dialog
	Example

	Image Writer
	Dialog
	Example

	Variables

	Devices
	Add and edit
	Show dialogs
	Robotino
	Toolbar
	Dialog
	Function blocks
	Drive system
	Motor
	Dialog

	Omnidrive

	Collision detection
	Bumper
	Distance sensors
	Example

	Image system
	Camera
	Dialog

	I/O connector
	Relay
	Digital output
	Analog input
	Digital input

	Navigation
	Odometry
	North Star
	Dialog
	Example

	I/O extension
	Encoder input
	Power output
	Gripper

	Internal sensors
	Power management
	Shutdown

	Joystick
	Dialog
	Function blocks
	Button
	Axis

	Local camera
	Dialog
	Function blocks
	Camera
	Dialog

	OPC Client
	Dialog
	Function blocks
	Inputs
	Analog input
	Digital input

	Outputs
	Analog output
	Digital output

	Data exchange
	Server
	Dialog

	Client
	Dialog

	Function blocks
	Reader
	Writer

	UDP data exchange
	Protocol
	Checksum
	Data types
	Message 0
	Message 1

	Dialog
	Function blocks
	Message 0
	Input
	Reader

	Output
	Writer

	Message 1

	Example

	Programming
	My function blocks
	Tutorial 1

